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This is a lecture note for the topology course a on Nov. 25, 2021. In this note, we
study winding numbers, which are fundamental objects in algebraic topology. We
introduce its motivation, definition, simple properties, and use it to prove a toy
theorem: the two-dimensional case of Brouwer fixed-point theorem.

aLecturer: Yaokun Wu, homepage: https://math.sjtu.edu.cn/faculty/ykwu/home.php

Our main subjects are loops, so we first define it formally.

Definition 0.1. A continuous map 𝛾 : [0, 1] → ℂ is called a path; it is called a loop if
𝛾 (0) = 𝛾 (1).

Equivalently, we may write 𝛾 : 𝑆1 → ℂ, where 𝑆1 is the circle that can be specified as
𝑆1 def

= {𝑥 ∈ ℂ : |𝑥 | = 1}.
Note that a path 𝛾 cannot fill the entire complex plane, i.e., Im(𝛾) ≠ ℂ. This is because

[0, 1] is compact (since it is closed and bounded) while ℂ is not, and any continuous image
of a compact space is compact. Without loss of generality, we may assume 0 ∉ Im(𝛾), and
write 𝛾 : [0, 1] → ℂ \ {0} directly.

1 How many times does a path rotate around a point?
Let us begin with two paths in fig. 1. One might say that 𝛾1 ‘rotates more’ than 𝛾2. How
can we make sense of such intuition?

Consider the simplest loop 𝑒𝑛 : 𝑥 ↦→ 𝑒2𝜋𝑖𝑛𝑥 . Intuitively, 𝑒𝑛 rotate 𝑛 times (around 0)
when 𝑥 changes from 0 to 1. This can be generalized a little: if a loop 𝛾 can be written as
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𝛾1 𝛾2

Figure 1: Two paths

exp ◦𝑔 for some continuous 𝑔, then 𝑔(𝑥)/𝑖 is the rotation angle at time 𝑥 , so it is reasonable
to define the winding number of 𝛾 as (𝑔(1) − 𝑔(0))/(2𝜋𝑖). Formally,

Definition 1.1. A continuous map 𝑓 : 𝑋 → ℂ \ {0} is an exponential if there exists a
continuous 𝑔 : 𝑋 → ℂ such that 𝑓 = exp ◦𝑔.

Two natural questions arise:

1. Are there other characterizations of being an exponential?

2. Is every path 𝛾 an exponential? If it is, we can define winding number as we wanted.

The rest of this section shall give affirmative answers to both questions and finally arrive
at a formal definition of winding number.

Lemma 1.1. Let 𝑓 : 𝑋 → ℂ \ {0} be a continuous map. If 𝑓 never takes negative real values, then
𝑓 is an exponential.

Proof. Letℝ<0 denote the set of negative real numbers. Define a function LOG : ℂ\ℝ<0 → ℂ

via
LOG(𝑧) def

= log |𝑧 | + 𝑖Arg(𝑧),
where Arg(𝑧) ∈ (𝜋, 𝜋] is the principal value of arg(𝑧). It is known that LOG is continuous
on ℂ \ ℝ<0. Since 𝑓 takes values on ℂ \ ℝ<0, we have 𝑓 = exp ◦LOG ◦ 𝑓 , and hence 𝑓 is an
exponential. □

Lemma 1.2. If a continuous map 𝑓 : 𝑋 → ℂ \ {0} is an exponential, then it is null-homotopic.
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Proof. Suppose that 𝑓 = exp ◦𝑔 for some continuous map 𝑔. Consider the homotopy

ℎ : [0, 1] × 𝑋 → ℂ, (𝑡, 𝑥) ↦→ exp ((1 − 𝑡)𝑔(𝑥)) . (1)

That is, ℎ𝑡 = exp ◦(1 − 𝑡)𝑔. Clearly, ℎ0 = 𝑓 and ℎ1 = 1 is a constant map. □

In fact, we shall prove that the converse of lemma 1.2 is also true, which gives us a
necessary and sufficient condition of being an exponential. To reach that, we need the
following theorem.

Theorem 1.3 (Rouche theorem). Let 𝑓0 and 𝑓1 be two continuous maps from 𝑋 to ℂ \ {0}. If

|𝑓0(𝑥) − 𝑓1(𝑥) | < |𝑓0(𝑥) | + |𝑓1(𝑥) | ,∀𝑥 ∈ 𝑋, (2)

then 𝑓0/𝑓1 is an exponential.

Proof. We rewrite eq. (2) as ���� 𝑓0(𝑥)𝑓1(𝑥)
− 1

���� < ���� 𝑓0(𝑥)𝑓1(𝑥)

���� + 1,∀𝑥 ∈ 𝑋 . (3)

Note that for any 𝑥 ∈ ℝ<0, we have |𝑥 − 1| = |𝑥 | + 1, and hence eq. (3) implies 𝑓0(𝑥)/𝑓1(𝑥) ∉
ℝ<0 for all 𝑥 ∈ 𝑋 . By lemma 1.1, we conclude that 𝑓0/𝑓1 is an exponential. □

Proposition 1.1. Let 𝑓0 and 𝑓1 be two continuous maps from 𝑋 to ℂ \ {0}. Then

𝑓0 and 𝑓1 are homotopic ⇐⇒ 𝑓0/𝑓1 is an exponential.

Proof. (⇐) If 𝑓0/𝑓1 is an exponential, by lemma 1.2, there exists a homotopy ℎ such that
ℎ0 = 𝑓0/𝑓1 and ℎ1 = 1. Then the homotopy ℎ̃ defined via ℎ̃𝑡

def
= ℎ𝑡 · 𝑓1 is a homotopy from 𝑓0

to 𝑓1.
(⇒) Suppose that there exists a homotopy ℎ such that ℎ0 = 𝑓0/𝑓1 and ℎ1 = 1. Choose

a large enough number 𝑁 ∈ ℕ. For 𝑖 ∈ [𝑁 ] ∪ {0}, define ℎ̃𝑖
def
= ℎ𝑖/𝑁 . By definition,

ℎ̃0 = ℎ0 = 𝑓0/𝑓1, ℎ̃𝑁 = ℎ1 = 1, and thus

𝑓0
𝑓1

= ℎ̃0 =
ℎ̃0

ℎ̃1
· ℎ̃1

ℎ̃2
· · · ℎ̃𝑁−1

ℎ̃𝑁
.
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It suffices to show that for every 𝑖 ∈ {0, 1, . . . , 𝑁 − 1}, ℎ̃𝑖/ℎ̃𝑖+1 is an exponential. By Hausdorff
property, there exists 𝜀 > 0 such that

���ℎ̃𝑖 (𝑥)��� > 𝜀 for all 𝑥 and 𝑖. We choose a big 𝑁 such that���ℎ̃𝑖+1(𝑥) − ℎ̃𝑖 (𝑥)
��� < 2𝜀, then we get���ℎ̃𝑖+1(𝑥) − ℎ̃𝑖 (𝑥)

��� < 2𝜀 <
���ℎ̃𝑖+1(𝑥)

��� + ���ℎ̃𝑖 (𝑥)��� ,∀𝑥 ∈ 𝑋,∀𝑖 .

By theorem 1.3, ℎ̃𝑖/ℎ̃𝑖+1 is an exponential for every 𝑖; this finishes the proof. □

Proposition 1.2. A map 𝑓 : 𝑋 → ℂ is an exponential iff 𝑓 is null-homotopic.

Proof. This immediately follows from proposition 1.1 by setting 𝑓0 = 𝑓 , 𝑓1 = 1. □

Proposition 1.3. Every path 𝛾 : [0, 1] → ℂ \ {0} is an exponential.

Proof. Consider the homotopy ℎ : [0, 1] × [0, 1] → ℂ, (𝑡, 𝑥) ↦→ 𝛾 ((1 − 𝑡)𝑥). That is, 𝛾 is null
homotopic; by proposition 1.2, we conclude that it is an exponential. □

Finally, we are ready to give the formal definition of winding number.

Definition 1.2 (Winding number). Let 𝛾 : [0, 1] → ℂ \ {0} be a loop. By proposition 1.3,
𝛾 = exp ◦𝑔 for some 𝑔 : [0, 1] → ℂ. The winding number of 𝛾 at 0 is defined as

WN(𝛾) def
=

𝑔(1) − 𝑔(0)
2𝜋𝑖 ∈ ℤ.

Moreover, if 𝛾 : [0, 1] → ℂ \ {pt}, i.e., 𝛾 does not pass the point pt, the winding number of
𝛾 at pt is defined as

WN(𝛾 ; pt) def
= (𝛾 − pt).

One piece is missing in the above definition. What if we have two different functions
𝑔1, 𝑔2 such that 𝛾 = exp ◦𝑔1 = exp ◦𝑔2? We have to argue that 𝑔1 and 𝑔2 give the same
winding number for 𝛾 , so that WN(𝛾) is well-defined. Since 𝛾 (𝑡) = exp(𝑔1(𝑡)) = exp(𝑔2(𝑡)),
we have 𝜙 (𝑡) def

= 𝑔1(𝑡) −𝑔2(𝑡) = 𝑛 · 2𝜋𝑖 for some 𝑛 ∈ ℤ. Note that 𝜙 is continuous, it must be
a constant; that is, 𝑔1(𝑡) − 𝑔2(𝑡) does not depend on 𝑡 . Hence, 𝑔1(1) − 𝑔2(1) = 𝑔1(0) − 𝑔2(0),
or equivalently

𝑔1(1) − 𝑔1(0) = 𝑔2(1) − 𝑔2(0),
which means WN(𝛾) is well-defined.

4



2 Properties and applications
We say a homotopy ℎ : [0, 1] × [0, 1] → ℂ \ {pt} is loop-preserving if at every time 𝑡 ∈ [0, 1],
the map ℎ𝑡 (·)

def
= ℎ(𝑡, ·) is a loop.

Lemma 2.1. Let 𝛾 : [0, 1] → ℂ \ {pt} be a loop. Then

WN(𝛾) = 0 ⇐⇒ 𝛾 is null homotopic and the homotopy is loop-preserving.

Proof. Without loss of generality, say pt = 0.
(⇒) WN(𝛾) = 0 means 𝛾 = exp ◦𝑔 for some 𝑔 with 𝑔(0) = 𝑔(1). Then the homotopy

ℎ𝑡 (𝑥)
def
= exp ((1 − 𝑡)𝑔(𝑥)) is loop-preserving and ℎ1 = 1.

(⇐)Let ℎ be a loop-preserving homotopy with ℎ0 = 𝛾, ℎ1 = 1. At any time 𝑡 ∈ [0, 1], ℎ𝑡
is loop, so ℎ𝑡 can be decomposed as ℎ𝑡 = 𝜑𝑡 ◦ 𝜂, where 𝜑𝑡 is a continuous map from 𝑆1 to
ℂ \ {0}, and

𝜂 : [0, 1] → 𝑆1, 𝑥 ↦→ exp(2𝜋𝑥𝑖).
Note that (𝜑𝑡 )𝑡∈[0,1] forms a homotopy from 𝑆1 to ℂ \ {0}, where 𝜑1 = 1. By lemma 1.2,
𝜑0 is an exponential, i.e., 𝜑0 = exp ◦𝜓 for some continuous map 𝜓 : 𝑆1 → ℂ. Since
𝛾 = ℎ0 = 𝜑0 ◦ 𝜂 = exp ◦𝜓 ◦ 𝜂, the relation between these maps is demonstrated in the
following commutative diagram.

𝛾
[0, 1] ℂ \ {0}

𝑆1

𝜂
𝜑0

𝜓
ℂ

exp

Write 𝑔 def
= 𝜓 ◦ 𝜂, and we have

𝜂 (0) = 𝜂 (1) =⇒ 𝑔(1) = 𝑔(0) =⇒ WN(𝛾) = 0.

□

Lemma 2.2. Let 𝛾1 and 𝛾2 be two loops. Then WN(𝛾) = WN(𝛾1) + WN(𝛾2), where 𝛾 def
= 𝛾1 · 𝛾2.
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Proof. Suppose that 𝛾1 = exp ◦𝑔1, 𝛾2 = exp ◦𝑔2, then 𝛾 = exp ◦𝑔 where 𝑔 = 𝑔1 + 𝑔2. By
definition,

WN(𝛾) = 𝑔(1) − 𝑔(0)
2𝜋𝑖 =

𝑔1(1) − 𝑔1(0)
2𝜋𝑖 + 𝑔2(1) − 𝑔2(0)

2𝜋𝑖 = WN(𝛾1) + WN(𝛾2).

□

Proposition 2.1. For any loop 𝛾 ,

WN(𝛾) = 𝑛 ⇐⇒ 𝛾 is homotopic to 𝑒𝑛 and the homotopy is loop-preserving,

where we recall that 𝑒𝑛 : 𝑥 ↦→ 𝑒2𝑛𝜋𝑖𝑥 .

Proof. Let 𝛾 be a loop. Since WN(𝑒𝑛) = 𝑛, by lemma 2.2, we have

WN(𝛾) = 𝑛 ⇐⇒ WN(𝛾 · 𝑒−𝑛) = 0.

According to lemma 2.1,

WN(𝛾 · 𝑒−𝑛) = 0 ⇐⇒ 𝛾 · 𝑒−𝑛 is null homotopic and the homotopy is loop-preserving
⇐⇒ 𝛾 is homotopic to 𝑒𝑛 and the homotopy is loop-preserving.

□

A toy application: a special case of Brouwer fixed-point theorem
Finally, we use winding numbers to prove a special case of Brouwer fixed-point theorem:
the 2-dimensional case:

Theorem 2.3 (Brouwer fixed-point theorem, 2-dimensional case). Every continuous function
from disc 𝐷2 to itself has a fixed point.

Here we specify the disc 𝐷2 as

𝐷2 def
= {𝑥 ∈ ℂ : |𝑥 | ≤ 1} .

We shall draw on the following lemma:
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Lemma 2.4. There is no continuous map 𝑓 : 𝐷2 → 𝑆1 such that 𝑓 |𝑆1 is identity map, i.e., 𝑓 is
invariant on 𝑆1.

Proof. Assume toward contradiction that 𝑓 : 𝐷2 → 𝑆1 is a continuous map with 𝑓 |𝑆1 = Id𝑆1 .
Define the map

ℎ : [0, 1] × [0, 1], (𝑡, 𝑥) ↦→ 𝑓
(
(1 − 𝑡) exp(2𝜋𝑥𝑖)

)
.

As usual, we write ℎ𝑡 (·)
def
= ℎ(𝑡, ·). Since 𝑓 is invariant on 𝑆1, we have ℎ0 = 𝑒1; and ℎ1 is

a constant map always equals to 𝑓 (0). That is, 𝑒1 is null-homotopic and the homotopy
ℎ is clearly loop-preserving. By lemma 2.1, WN(𝑒1) = 0, but by definition WN(𝑒1) = 1, a
contradiction. □

Proof of theorem 2.3. Assume toward contradiction that there is a continuous map 𝑓 : 𝐷2 →
𝐷2 with no fixed point. For 𝑥 ∈ 𝐷2, since 𝑓 (𝑥) ≠ 𝑥 , the ray

ℓ𝑥
def
= {𝑓 (𝑥) + 𝜆(𝑥 − 𝑓 (𝑥)) : 𝜆 ≥ 0}

intersects with 𝑆1 at exactly one point, as is shown in fig. 2. We denote this single point as
𝜙 (𝑥). Note that 𝜙 : 𝐷2 → 𝑆1 is continuous as long as 𝑓 is, and 𝜙 is invariant on 𝑆1, which is
in contradiction with lemma 2.4. □

𝑓 (𝑥)

𝑥

𝜙 (𝑥)
ℓ𝑥

Figure 2: The definition of 𝜙 (𝑥).
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