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This is a lecture note for the topology course “ on Nov. 25, 2021. In this note, we
study winding numbers, which are fundamental objects in algebraic topology. We
introduce its motivation, definition, simple properties, and use it to prove a toy
theorem: the two-dimensional case of Brouwer fixed-point theorem.

“Lecturer: Yaokun Wu, homepage: https://math.sjtu.edu.cn/faculty/ykwu/home.php

Our main subjects are loops, so we first define it formally.

Definition 0.1. A continuous map y : [0,1] — C is called a path; it is called a loop if
r(0) = y(1).

Equivalently, we may write y : S — C, where S! is the circle that can be specified as

©xeC: x| =1).

Note that a path y cannot fill the entire complex plane, i.e., Im(y) # C. This is because
[0,1] is compact (since it is closed and bounded) while C is not, and any continuous image
of a compact space is compact. Without loss of generality, we may assume 0 ¢ Im(y), and
write y : [0,1] — C\ {0} directly.

Sl

1 How many times does a path rotate around a point?

Let us begin with two paths in fig. 1. One might say that y; ‘rotates more’ than y,. How
can we make sense of such intuition?

Consider the simplest loop e, : x > e?""*. Intuitively, e, rotate n times (around 0)
when x changes from 0 to 1. This can be generalized a little: if a loop y can be written as
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Figure 1: Two paths

exp og for some continuous g, then g(x)/i is the rotation angle at time x, so it is reasonable
to define the winding number of y as (g(1) — g(0))/(2xi). Formally,

Definition 1.1. A continuous map f : X — C\ {0} is an exponential if there exists a
continuous g : X — C such that f = exp og.

Two natural questions arise:
1. Are there other characterizations of being an exponential?
2. Isevery path y an exponential? If it is, we can define winding number as we wanted.

The rest of this section shall give affirmative answers to both questions and finally arrive
at a formal definition of winding number.

Lemma 1.1. Let f : X — C\ {0} be a continuous map. If f never takes negative real values, then
f is an exponential.

Proof. Let R.g denote the set of negative real numbers. Define a functionLOG : C\R.y — C
via dof
LOG(z) = log |z| + iArg(z),

where Arg(z) € (x, 7] is the principal value of arg(z). It is known that LOG is continuous
on C \ R.g. Since f takes values on C \ Ry, we have f = expoL0G o f, and hence f is an
exponential. o

Lemma 1.2. If a continuous map f : X — C \ {0} is an exponential, then it is null-homotopic.



Proof. Suppose that f = exp og for some continuous map g. Consider the homotopy
h:[0,1] xX — C, (t,x) — exp ((1 - t)g(x)) . (1)
That is, h; = exp o(1 - t)g. Clearly, hp = f and hy = 1is a constant map. o

In fact, we shall prove that the converse of lemma 1.2 is also true, which gives us a
necessary and sufficient condition of being an exponential. To reach that, we need the
following theorem.

Theorem 1.3 (Rouche theorem). Let f; and fi be two continuous maps from X to C \ {0}. If

fo(x) = ()] < [fo(o)| + Ai(x)], Vx € X, (2)

then fy/ fi is an exponential.

Proof. We rewrite eq. (2) as
Jo(x)

Jo(x) '
-1 < +1,Vx € X. 3
e AT ©
Note that for any x € R.o, we have |x — 1| = |x| + 1, and hence eq. (3) implies fy(x)/fi(x) ¢
R for all x € X. By lemma 1.1, we conclude that fy/fi is an exponential. |

Proposition 1.1. Let fy and f; be two continuous maps from X to C \ {0}. Then

fo and f; are homotopic &= fy/fi is an exponential.

Proof. (<) If fo/fi is an exponential, by lemma 1.2, there exists a homotopy h such that

ho = fo/fi and hy = 1. Then the homotopy h defined via h, - fi is a homotopy from f;
to f1.

(=) Suppose that there exists a homotopy h such that hy = fo/fi and h; = 1. Choose
a large enough number N € N. For i € [N] U {0}, define h; &« hi/Ny. By definition,
ho = ho = fo/fi, hn = h1 =1, and thus



It suffices to show that foreveryi € {0,1,...,N -1}, E / E‘+1 is an exponential. By Hausdorft
property, there exists ¢ > 0 such that ’E(x)‘ > ¢ for all x and i. We choose a big N such that

E‘+1 (x) — E(x)‘ < 2¢, then we get

it (x) = ()| < 2¢ <

Bt (x)‘ + ‘E(x)’,Vx € X, Vi,

By theorem 1.3, E/ E+1 is an exponential for every i; this finishes the proof. O
Proposition 1.2. A map f : X — C is an exponential iff f is null-homotopic.

Proof. This immediately follows from proposition 1.1 by setting fo = f, i = 1. o
Proposition 1.3. Every path y : [0,1] — C\ {0} is an exponential.

Proof. Consider the homotopy h : [0,1] X [0,1] — C, (t,x) = y((1 — t)x). That s, y is null
homotopic; by proposition 1.2, we conclude that it is an exponential. m|

Finally, we are ready to give the formal definition of winding number.

Definition 1.2 (Winding number). Let y : [0,1] — C \ {0} be a loop. By proposition 1.3,
y = exp og for some g : [0,1] — C. The winding number of y at 0 is defined as

aef gD —9(0) _

WN(y) 27i

Moreover, if y : [0,1] — C\ {pt}, i.e., y does not pass the point pt, the winding number of
y at pt is defined as

def
WN(y;pt) = (y - pt).

One piece is missing in the above definition. What if we have two different functions
g1, 92 such that y = expog; = expog,? We have to argue that g; and g, give the same
winding number for y, so that WN(y) is well-defined. Since y(t) = exp(g1(t)) = exp(g2(t)),

we have ¢(t) qef g1(t) — g2(t) = n-2xi for some n € Z. Note that ¢ is continuous, it must be
a constant; that is, g1 (t) — g2(t) does not depend on t. Hence, g1(1) — g2(1) = g1(0) — g2(0),
or equivalently

91(1) = 91(0) = g2(1) - 92(0),

which means WN(y) is well-defined.



2 Properties and applications

We say a homotopy h : [0,1] X [0,1] — C\ {pt} is loop-preserving if at every time t € [0, 1],
def .
the map h;(-) = h(t,-) is a loop.

Lemma 2.1. Let y : [0,1] — C\ {pt} be a loop. Then

WN(y) =0 < vy is null homotopic and the homotopy is loop-preserving.

Proof. Without loss of generality, say pt = 0.

(=) WN(y) = 0 means y = exp og for some g with g(0) = g(1). Then the homotopy
h: (x) def exp ((1 —t)g(x)) is loop-preserving and h; = 1.

(&<)Let h be a loop-preserving homotopy with hg =y, h1 = 1. At any time ¢ € [0,1], h;
is loop, so h; can be decomposed as h; = ¢; o n, where ¢, is a continuous map from st to
C\ {0}, and

n:[0,1] — sLx - exp(2nxi).

Note that (¢;);e[0,1] forms a homotopy from S! to C\ {0}, where ¢; = 1. By lemma 1.2,
@0 is an exponential, i.e., ¢y = exp oy for some continuous map ¢ : S' — C. Since
Yy = ho = @o o n = expoy o1, the relation between these maps is demonstrated in the
following commutative diagram.

st v

— = C

T ®0

n exp
Y

[0, 1] ——=C \ {0}

Write g & ¥ o5, and we have

n(0) =n(1) = ¢(1) = g(0) = WN(y) =0.

Lemma 2.2. Let y; and y» be two loops. Then WN(y) = WN(y1) + WN(y2), where y & Y1 - y2.



Proof. Suppose that y; = expogi,y2 = expogy, then y = expog where g = g1 + g». By
definition,

9 —9(0) _ 1) —g1(0)  92(1) — 92(0)

) = 27i 27i 27i = WN(y1) +WN(r2).
O
Proposition 2.1. For any loop y,
WN(y) =n <= y is homotopic to e, and the homotopy is loop-preserving,
where we recall that e, : x > €277,
Proof. Let y be aloop. Since WN(e,) = n, by lemma 2.2, we have
WN(y) =n < WN(y-e_,) =0.
According to lemma 2.1,
WN(y-e_n) =0 < y-e_,isnull homotopic and the homotopy is loop-preserving
& y is homotopic to e, and the homotopy is loop-preserving.
O

A toy application: a special case of Brouwer fixed-point theorem

Finally, we use winding numbers to prove a special case of Brouwer fixed-point theorem:
the 2-dimensional case:

Theorem 2.3 (Brouwer fixed-point theorem, 2-dimensional case). Every continuous function
from disc D to itself has a fixed point.
Here we specify the disc D? as

D*% (xeC:|x <1}

We shall draw on the following lemma:



Lemma 2.4. There is no continuous map f : D> — S such that f|q is identity map, i.e., f is
invariant on S'.

Proof. Assume toward contradiction that f : D> — S!is a continuous map with f|g = Idg.
Define the map
h:[0,1] X [0,1], (¢, x) — f ((1—t) exp(2rxi)) .

) f ) .. ) )
As usual, we write h;(-) de h(t,-). Since f is invariant on S, we have hy = e;; and h; is

a constant map always equals to f(0). That is, e; is null-homotopic and the homotopy
h is clearly loop-preserving. By lemma 2.1, WN(e;) = O, but by definition WN(e;) = 1, a
contradiction. o

Proof of theorem 2.3. Assume toward contradiction that there is a continuous map f : D> —
D? with no fixed point. For x € D?, since f(x) # x, the ray

def

b = {f(x) +Ax - f(x) : 120}

intersects with S! at exactly one point, as is shown in fig. 2. We denote this single point as
¢(x). Note that ¢ : D> — S! is continuous as long as f is, and ¢ is invariant on S!, which is
in contradiction with lemma 2.4. ]

¢ (x)

Figure 2: The definition of ¢(x).
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