

On the Power of SVD in the Stochastic Block Model

Xinyu Mao and Jiapeng Zhang, University of Southern California

NeurIPS 2023

Heuristic for clustering: dimensionality reduction

- "Curse of dimensionality": higher dimensional data \rightarrow worse performance.
 - ▶ In particular, this phenomenon is observed for clustering algorithms.
- Heuristic: Apply dimensionality reduction before clustering.
 - A widely-used dimensionality reduction tool: Spectral methods like Principal Component Analysis/Singular Value Decomposition.

Why do spectral methods (like PCA/SVD) help to cluster high-dimensional datasets?

Stochastic Block Model (SBM) and Vanilla-SVD algorithm

Well-known theoretical Benchmark for graph clustering

(Symmetric) SBM

- I. Let V denote the set of vertices.
- 2. V is partitioned into k disjoint sets $V = \bigcup_{i=1}^{k} V_k$ uniformly at random.
- 3. A random (undirected) graph \hat{G} is sampled in the following way: $\forall u, v \in V$,
 - an edge $\{u, v\}$ is added independently with probability p, if u, v are in the same set;
 - otherwise, an edge $\{u, v\}$ is added independently with probability q.

Task: Given \hat{G} , recover the partition V_1, \dots, V_k .

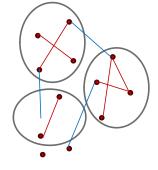
Vanilla-SVD algorithm

 \hat{G}_u : the column indexed by u in the adjacent matrix \hat{G} .

- 1. Let P_k be the projection to the subspace spanned by the first k eigenvectors of \hat{G} .
- 2. Compute $\rho(u) \coloneqq P_k \hat{G}_u$ for each vertex u.
- 3. Clustering according to the distances given by the vector representation ρ : put u, v in the same cluster if $\|\rho(u) \rho(v)\| \le 0.2(p-q)\sqrt{n/k}$.

Many existing spectral algorithms: [McSherry 01,Vu18]...

"Vanilla spectral algorithm": No extra steps, widely used in practice.



Our result: Vanilla-SVD exhibits clustering power

Vanilla-SVD algorithm

- 1. Let P_k be the projection to the subspace spanned by the first k eigenvectors of \hat{G} .
- 2. Compute $\rho(u) \coloneqq P_k \hat{G}_u$ for each vertex u.
- 3. Clustering according to the distances given by the vector representation ρ .

Main Theorem

In the symmetric SBM, Vanilla-SVD algorithm recovers all clusters with probability $1 - O(n^{-1})$ if $\max\{p(1-p), q(1-q)\} \ge \frac{C \log n}{n}$ and $n \ge C \cdot k \left(\frac{\sqrt{kp} \log^6 n + \sqrt{\log n}}{p-q}\right)^2$, where n := # of vertices and C is a universal constant.

where $n \coloneqq \#$ of vertices and C is a universal constant.

- Previous analysis only applies to either non-vanilla algorithms or more restricted parameter regimes.
 - E.g. for vanilla-SVD, only the case k = O(1) is analyzed prior to our work.
- Provides theoretical understanding of successful heuristics.
- ▶ Technical Contribution: a new method to analyze the eigenspace under random perturbation.

Summary

Why do spectral methods (like PCA/SVD) help to cluster high-dimensional datasets?

Main Theorem

In the symmetric SBM, Vanilla-SVD algorithm recovers all clusters with probability $1 - O(n^{-1})$ if $\max\{p(1 - p), q(1 - q)\} \ge \frac{C \log n}{n}$ and $n \ge C \cdot k \left(\frac{\sqrt{kp} \log^6 n + \sqrt{\log n}}{p - q}\right)^2$,

where n := # of vertices and C is a universal constant.

Our result suggests that vanilla spectral algorithms exhibit clustering power itself.

Future works: better parameters, apply our method to other models...

Thank you for listening 🙂