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Heuristic for clustering:
dimensionality reduction

» “Curse of dimensionality”: higher dimensional data = worse performance.
» In particular, this phenomenon is observed for clustering algorithms.
» Heuristic: Apply dimensionality reduction before clustering.

» A widely-used dimensionality reduction tool: Spectral methods like Principal
Component Analysis/Singular Value Decomposition.

Why do spectral methods (like PCA/SVD) help to cluster high-dimensional datasets?




Stochastic Block Model (SBM)
and Vanilla-SVD algorithm _ \ ™

Well-known theoretical
Benchmark for graph clustering

(Symmetric) SBM
|. Let V denote the set of vertices.
2. V is partitioned into k disjoint sets V = U¥_, V; uniformly at random.
3. A random (undirected) graph G is sampled in the following way: Vu, v € V,
* an edge {u, v} is added independently with probability p, if u, v are in the same set;
» otherwise, an edge {u, v} is added independently with probability g.

Task: Given G, recover the partition V7, ..., V.

Gy,: the column indexed by u in the
adjacent matrix G.

Vanilla-SVD algorithm

|. Let P, be the projectionj[o the subspace spanned by the first k eigenvectors of G.| Many existing spectral

2. Compute p(u) = P,G,[ffor each vertex u. algorithms:
3. Clustering according to the distances given by the vector representation p: put [McSherry 01,Vul8]...

u, v in the same cluster if ||[p(u) — p(V)|| < 0.2(p — @) /n / k.

“Vanilla spectral algorithm”: No extra steps, widely used in practice.




Our result:
Vanilla-SVD exhibits clustering power

Vanilla-SVD algorithm

|. Let P, be the projection to the subspace spanned by the first k eigenvectors of G.
2. Compute p(u) = PG, for each vertex u.
3. Clustering according to the distances given by the vector representation p.

Main Theorem

In the symmetric SBM, Vanilla-SVD algorithm recovers all clusters with probability 1 — 0(n™1) if
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where n := # of vertices and C is a universal constant.

» Previous analysis only applies to either non-vanilla algorithms or more restricted parameter regimes.
» E.g.for vanilla-SVD, only the case k = O(1) is analyzed prior to our work.

» Provides theoretical understanding of successful heuristics.

» Technical Contribution: a new method to analyze the eigenspace under random perturbation.



Summary

Why do spectral methods (like PCA/SVD) help to cluster high-dimensional datasets?

Main Theorem

In the symmetric SBM, Vanilla-SVD algorithm recovers all clusters with probability 1 — 0(n™1) if
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where n := # of vertices and C is a universal constant.

Future works: better parameters,
apply our method to other
models...

Our result suggests that
vanilla spectral algorithms exhibit clustering power itself.

Thank you for listening ©



