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Heuristic for clustering:
dimensionality reduction

 “Curse of dimensionality”:  higher dimensional data  worse performance.

 In particular, this phenomenon is observed for clustering algorithms. 

 Heuristic:  Apply dimensionality reduction before clustering.

 A widely-used dimensionality reduction tool: Spectral methods like Principal 
Component Analysis/Singular Value Decomposition.
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Why do spectral methods (like PCA/SVD) help to cluster high-dimensional datasets?



Stochastic Block Model (SBM) 
and Vanilla-SVD algorithm
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1. Let 𝑉 denote the set of vertices.
2. 𝑉 is partitioned into 𝑘 disjoint sets 𝑉 =  ⋃ 𝑉௞

௞
௜ୀଵ uniformly at random.

3. A random (undirected) graph 𝐺෠ is sampled in the following way: ∀𝑢, 𝑣 ∈ 𝑉, 
• an edge 𝑢, 𝑣 is added independently with probability 𝑝, if 𝑢, 𝑣 are in the same set;
• otherwise, an edge 𝑢, 𝑣 is added independently with probability 𝑞.

Task: Given 𝐺෠, recover the partition 𝑉ଵ, … , 𝑉௞.

(Symmetric) SBM

1. Let 𝑃௞ be the projection to the subspace spanned by the first 𝑘 eigenvectors of 𝐺෠. 
2. Compute 𝜌 𝑢  ≔ 𝑃௞𝐺෠௨for each vertex 𝑢.
3. Clustering according to the distances given by the vector representation 𝜌: put 

𝑢, 𝑣 in the same cluster if 𝜌 𝑢 − 𝜌(𝑣) ≤ 0.2 𝑝 − 𝑞 𝑛 / 𝑘.

Vanilla-SVD algorithm
𝐺෠௨: the column indexed by 𝑢 in the 

adjacent matrix 𝐺෠. 

Well-known theoretical 
Benchmark for graph clustering

“Vanilla spectral algorithm”: No extra steps, widely used in practice.

Many existing spectral 
algorithms:
[McSherry 01, Vu18]…



Our result: 
Vanilla-SVD exhibits clustering power 

 Previous analysis only applies to either non-vanilla algorithms or more restricted parameter regimes. 

 E.g. for vanilla-SVD, only the case 𝑘 = 𝑂(1) is analyzed prior to our work.  

 Provides theoretical understanding of successful heuristics.

 Technical Contribution: a new method to analyze the eigenspace under random perturbation. 
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1. Let 𝑃௞ be the projection to the subspace spanned by the first 𝑘 eigenvectors of 𝐺෠. 
2. Compute 𝜌 𝑢  ≔ 𝑃௞𝐺෠௨for each vertex 𝑢.
3. Clustering according to the distances given by the vector representation 𝜌.

Vanilla-SVD algorithm

In the symmetric SBM,  Vanilla-SVD algorithm recovers all clusters with probability 1 − 𝑂(𝑛ିଵ) if 

max 𝑝 1 −  𝑝 , 𝑞 1 −  𝑞 ≥
𝐶 log 𝑛

𝑛
  and  𝑛 ≥ 𝐶 ⋅ 𝑘

𝑘𝑝 log଺ 𝑛 + log 𝑛

𝑝 − 𝑞

ଶ

,

where 𝑛 ≔ # of vertices and 𝐶 is a universal constant.

Main Theorem
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Why do spectral methods (like PCA/SVD) help to cluster high-dimensional datasets?

Our result suggests that
vanilla spectral algorithms exhibit clustering power itself.

Thank you for listening 

In the symmetric SBM,  Vanilla-SVD algorithm recovers all clusters with probability 1 − 𝑂(𝑛ିଵ) if 

max 𝑝 1 −  𝑝 , 𝑞 1 −  𝑞 ≥
𝐶 log 𝑛

𝑛
  and  𝑛 ≥ 𝐶 ⋅ 𝑘

𝑘𝑝 log଺ 𝑛 + log 𝑛

𝑝 − 𝑞

ଶ

,

where 𝑛 ≔ # of vertices and 𝐶 is a universal constant.

Main Theorem

Future works: better parameters, 
apply our method to other 
models…


