
Lattice-based PRFs and Constrained PRFs

Xinyu Mao
November 13, 2021

Shanghai Jiao Tong Uninversity

Lattice-based PRF

The Construction in [BPR12]

Key-Homomorphic PRFs

Constrained PRF

Definitions

Key-Homomorphic Evaluation

Construction in [BV15]
1/28

Lattice-based PRF

Lattice-based PRF

The Construction in [BPR12]

Key-Homomorphic PRFs

Constrained PRF

1/28

Definition of Pseudorandom Functions (PRFs)

Definition 1 (Keyed function)
Let κ be a security parameter. A keyed function with domain
D := {Dκ}κ∈N and range R := {Rκ}κ∈N is a pair of PPT algorithms
(Gen, Eval) where

• Gen(1κ) 7→ K ∈ {0, 1}κ.
• Eval(K, x) 7→ y ∈ Rκ: The evaluation algorithm takes as input
x ∈ Dκ and outputs y ∈ Rκ.

Definition 2 (PRF)
A keyed function Π := (Gen, Eval) is a PRF if for every PPT adversary
A, the following quantity is negligible:∣∣∣∣∣ Pr

K←Gen(1κ)

[
AEval(K,·)(1κ) = 1

]
− Pr

f $←F

[
Af(·)(1κ) = 1

]∣∣∣∣∣ ,
where F is the set of all functions from Dκ to Rκ.

1/28

The Construction in [BPR12]

Construction 1
• Public parameters: moduli q > p.
• D := {0, 1}ℓ ,R := Znp.

• Gen(1κ) 7→ K : Sample a $← Znq and Si ← χn×n for each i ∈ ℓ.
Output K :=

(
a, {Si}i∈[ℓ]

)
.

• Eval(K, x) 7→ y : Parse K :=
(
a, {Si}i∈[ℓ]

)
and output

Fa,S1,...,Sℓ(x) :=
⌊
a⊤ ·

ℓ∏
i=1

Sxii

⌉
p

∈ Znp.

2/28

Proof Outline

• Replace Fa,S1,...,Sℓ(x) with

F̃a,S1,...,Sℓ(x) :=
⌊
(a⊤Sx11 + x1 · e⊤x1) ·

ℓ∏
i=2

Sxii

⌉
p

=

⌊
a⊤

ℓ∏
i=1

Sxi1 + x1 · e⊤x1 ·
ℓ∏
i=2

Sxii

⌉
p

.

• Since the error term is small, after rounding, F̃(x) = F(x) on all
queries w.h.p..

• Replace (a, a⊤S1 + e⊤x1) with uniform (u0,u1). That is, we now
output

F′a,S1,...,Sℓ(x) :=
⌊
ux1 ·

ℓ∏
i=2

Sxii

⌉
p

.

• Repeat for S2, . . . , Sℓ, we get F′′′′(x) = buxep, which is a uniformly
random function.

3/28

Key-Homomorphic Construction [BLMR13]

Construction 2

• Public parameters: B0,B1 $← {0, 1}m×m and moduli q > p.
• D := {0, 1}ℓ ,R := Zmp .

• Gen(1κ) 7→ K ∈ Zmq : Sample s $← Zmq and output K := s.
• Eval(s, x ∈ {0, 1}ℓ): Output

Fs(x) :=
⌊
s⊤

ℓ∏
i=1

Bxi

⌉
p

∈ Zmp .

• Almost key-homomorphic:

Fs1+s2(x) = Fs1(x) + Fs2(x) + {−1, 0, 1}
m
.

• The proof strategy is similar to [BPR12]: introduce short errors
that vanishes after rounding.

4/28

Proof Outline [BLMR13]

Fs(x) :=
⌊
s⊤

ℓ∏
i=1

Bxi

⌉
p

≈s

⌊
(s⊤Bx1 + ex1) ·

ℓ∏
i=2

Bxi

⌉
p

≈c

⌊
ux1 ·

ℓ∏
i=2

Bxi

⌉
p

≈c · · · ≈c buxep = U(x).

• Note that the public matrix B0,B1 is sampled from {0, 1}m×m

(not Zn×nq). This guarantees the error we introduced will not be
amplified when multiplied by Bi.

• By setting m ≈ n log q, this can be reduced to the standard LWE
with dimension n.

7 LWE approx factor α grows exponentially in input length ℓ.

5/28

Gadget Trapdoors, Rewind

Recall that the gadget matrix is defined as

G := In ⊗ g ∈ Zn×nℓq ,

where ℓ = dlog qe and g := (1, 2, 4, . . . , 2ℓ−1) ∈ Zℓ
q.

• If x ∈ {0, 1}ℓ is the binary decomposition of u ∈ Zq, we have
〈g, x〉 = u.

• View x ∈ {0, 1}nℓ as n blocks: x = (x{1}, . . . , x{n}), where each
block has length ℓ, i.e., x{i} ∈ {0, 1}ℓ. Then Gx = u ∈ Znq simply
says: x{i} is the binary decomposition of ui.

• G−1 is the “decomposition” function defined as:

G−1 : Znq → Znℓ

u 7→ a short x such that Gx = u.

6/28

[BP14]: A Tree Enjoys Better Parameter :)

Construction 3

• Public parameters: A0,A1 ∈ Zn×nℓq , a binary tree T, and a moduli
q ≥ p.

• D := {0, 1}|T| ,R := Znℓp , where |T| := number of leaves in T.

• Gen(1κ)→ K ∈ Znq : Sample s
$← Znq and output s.

• Eval(s, x)→ y : Output ⌊
s⊤ · AT(x)

⌉
∈ Znℓp .

AT : {0, 1}|T| → Zn×nℓq is defined recursively as

AT(a) :=
{
Ax if |T| = 1,
AT.l(x.l) · G−1(AT.r(x.r)), otherwise,

where we parse x := x.l‖x.r for x.l ∈ {0, 1}|T.l| , x.r ∈ {0, 1}|T.r|.

7/28

Fs(x) :=
⌊
s⊤ · AT(x)

⌉
∈ Znℓp where

AT(a) :=
{
Ax if |T| = 1,
AT.l(x.l) · G−1(AT.r(x.r)), otherwise.

• Sequentiality s(T) (the “right depth” of T): Circuit depth of PRF is
proportional to s(T).

• Expansion e(T) (the “left depth” of T): LWE approx factor is
exponential in e(T).

• Max input length = max number of leaves =
(e+s
e
)
.

8/28

Proof Idea

Consider the leftmost path:

Fs(x) =
⌊
s⊤Ax0 · G−1(AT1(

−→x1)) · · ·
⌉
p

≈s
⌊
(s⊤Ax0 + ex0) · G−1(AT1(

−→x1)) · · ·
⌉
p

≈c
⌊
u⊤x0 · G

−1(AT1(
−→x1)) · · ·

⌉
p . (∗)

• Problem:
{
AT1(
−→x1)

}
−→x1∈{0,1}w

is not independent unless
w := |−→x1 | = 1.

• A wishful thinking: if u⊤x0 = t⊤x0G, then (∗) =
⌊
t⊤x0 · AT1(

−→x1) · · ·
⌉
p .

• However, a uniformly random u is highly likely to be very far
from any vector of the form t⊤G.

9/28

Proof Idea

Solution: Write u⊤ = t⊤G+ v⊤, where v ∈ P(G) and t are uniform
and independent.

Fs(x) is indistinguishable from

F′u0,u1,v0,v1(x) =
⌊
t⊤x0 · AT′(x2‖ · · · ‖xℓ) + v⊤x0 · G

−1(AT1(
−→x1)) · · ·

⌉
p ,

Figure 1: T′ is the tree obtained from T by removing its leftmost leaf z and
promoting z’s sibling subtree T1 to replace their parent.

10/28

Summary
The common idea in [BLMR13] and [BP14]
• Generate some matrices

{
Ai ∈ Zn×mq

}
i∈[k] as public parameters.

• The key of the PRF is a vector s ∈ Znq.

• To evaluate on the point x ∈ {0, 1}ℓ, one first compute a matrix
Ax ∈ Zn×mq publicly, and output Fs(x) :=

⌊
s⊤Ax

⌉
p.

[BLMR13] can be view as a special case of [BP14] in the following
sense:

• The [BLMR13] construction works as long as the public matrices
B0,B1 is somewhat “short”. Hence, we may generate B0,B1 as
follows:

for i = 1, 2: Bi := G−1(Ai), where Ai
$← Zn×mq .

• This coincides with [BP14] construction by letting T be a
spline-shaped tree, i.e., s(T) = 1.

11/28

Constrained PRF

Lattice-based PRF

Constrained PRF

Definitions

Key-Homomorphic Evaluation

Construction in [BV15]

12/28

Syntax of Constrained PRF

• Let R = {Rκ}κ∈N and D = {Dκ}κ∈N be families of sets
representing the range and domain of the PRF respectively.

• Let C = {Cκ}κ∈N be a family of circuits, where Cκ is a set of
circuits with domain Dκ and range {0, 1}.

Definition 3 (Syntax of CPRF)
A constrained pseudorandom function for C is defined by the five
PPT algorithms Π := (Setup,Gen, Eval, Constrain, CEval) where:

• Setup(1κ) 7→ pp.
• Gen(pp) 7→ K : K is referred to as master key.
• Eval(pp, K, x ∈ D) 7→ y ∈ R.
• Constrain(K, C ∈ C) 7→ KC : KC is referred to as constrained key.
• CEval(pp, KC, x) 7→ y : CEval takes as input a public parameter pp,
a constrained key KC, and an input x ∈ D and outputs y ∈ R.

12/28

Pseudorandom on Constrained Points
The Game PRoCP
The game PRoCP between challenger C and adversary A has five
stages:
• Setup. C runs pp ← Setup(1κ), K ← Gen(pp), and set Seval =
Scon = ∅. C sends pp to A.

• Query. A can adaptively make the two types of queries:
– Evaluation Query. A queries x ∈ D, and C returns y ←
Eval(pp, K, x). C updates Seval := Seval ∪ {x}.

– Constrained Key Query. A queries C ∈ C, andC returns KC ←
Constrain(K, C). C updates Scon := Scon ∪ {C}.

• Challenge. A chooses x∗ ∈ D s.t. x∗ /∈ Seval and C(x∗) = 0 for all
C ∈ Scon. C toss a coin b $← {0, 1}; if b = 0, let y∗ $←R, otherwise,
y∗ ← Eval(pp, K, x∗). ;C returns y∗ to A.

• Query. Any query except for those C ∈ C with C(x∗) = 0.
• Guess. A guess b′ ∈ {0, 1}.

13/28

We say A wins iff b = b′.

Definition 4
A CPRF Π is said to be (adaptively) pseudorandom on constrained
points if for all PPT adversary A, it holds that∣∣Pr [Awins]− 1

2
∣∣ = negl(κ).

The CPRF is selectively pseudorandom if the constraint queries must
be query at the begin of the stage 2.

Definition 5 (Collusion Resistance)
In the game PRoCP, if we can tolerate up to Q constrained key
queries, we say the CPRF is Q-collusion resistance.

14/28

Gadget Trapdoors and Homomorphic Encryption, Revisited

Definition 6
A trapdoor for a parity-check matrix A ∈ Zn×mq is any sufficiently
“short” integer matrix R ∈ Zm×nℓq such that

AR = HG,

for some invertible H ∈ Zn×nq , called the tag of the trapdoor.

Trapdoor Generation

Sample Ā ← Zn×m̄q , a short R̄ ∈ Zm̄×nℓq , and an invertible matrix H ∈
Zn×nq . Set A :=

[
Ā | HG− ĀR̄

]
. Then R :=

[
R̄
I
]
is a trapdoor for A with

tag H.

15/28

Let Ā ∈ Zn×m̄q and define

Ai := ĀRi − xiG, i = 1, 2.

That is,
[Ri
I
]
is a trapdoor of

[
Ā | Ai

]
with tag xiI.

It holds that

A+ := A1 + A2 = Ā(R1 + R2︸ ︷︷ ︸
:=R+

)− (x1 + x2)G,

and

A× := −A1 · G−1(A2) = −(ĀR1 − x1G) · G−1(A2)
= −Ā · R1G−1(A2) + x1A2
= Ā(x1R2 − R1G−1(A2)︸ ︷︷ ︸

:=R×

)− x1x2G.

In the latter case, we need x1 to be a small integer in order to get a
good-quality trapdoor.

16/28

Homomorphic Evaluation of LWE Ciphertexts

Let s ∈ Znq and for i = 1, 2, let

u⊤i := s⊤(Ai + xiG) + e⊤i ,

where ei ← χm. Then

u⊤+ := u⊤1 + u⊤2 = s⊤((A1 + A2︸ ︷︷ ︸
A+

) + (x1 + x2)G) + e⊤1 + e⊤2︸ ︷︷ ︸
e⊤+

,

and

u⊤× := x1u⊤2 − u⊤1 G−1(A2)
= x1

(
s⊤(A2 + x2G) + e2

)
−
(
s⊤(A1 + x1G) + e1

)
G−1(A2)

= s⊤(−A1 · G−1(A2)︸ ︷︷ ︸
A×

+x1x2G) + e⊤1 G−1(A2)− x1e⊤2︸ ︷︷ ︸
e⊤×

.

17/28

Homomorphic Evaluation [BGG+14]

“Embed” bits x1, . . . , xk into matrices A1, . . . ,Ak ∈ Zn×mq and compute
a circuit C : {0, 1}k → {0, 1} on these matrices.
Homomorphic Evaluation
We have a pair of algorithms (ComputeA, ComputeC) satisfying the fol-
lowing properties:
• ComputeA(C,A1, . . . ,Ak) 7→ AC ∈ Zn×mq .
• ComputeC(C, {Ai, xi,ui}i∈[k]) 7→ uC ∈ Zmq . If ui = s⊤(Ai + xiG) + ei,
then

uC = s⊤(AC + C(x)G) + eC,

where ‖eC‖∞ ≤ (1+m)d ·maxi∈[k] ‖ei‖∞.

18/28

• What we can do: Embed x into some matrices, and compute
something about C(x) when given circuit C.

• Goal: With the constrained key KC for circuit C, we want to
evaluate a function on some point x somehow related to C(x).

Universal Circuit

Suppose that our circuits C :=
{
C : {0, 1}k → {0, 1}

}
can be described

by a string in {0, 1}z. There exists a universal circuit Uk : {0, 1}z ×
{0, 1}k → {0, 1} such that

Uk(C, x) = C(x),∀C ∈ C,∀x ∈ {0, 1}k .

19/28

CPRF: First Attmept

• Gen(1κ, 1z) 7→ (pp, K): Output

pp := (A0,A1︸ ︷︷ ︸
for input x

,B1, . . . ,Bz︸ ︷︷ ︸
for circuit C

), K := s,

where A0,A1,B1, . . . ,Bz $← Zn×mq and s $← Znq.
• Eval(pp, K = s, x ∈ {0, 1}k) : Compute

BU,x := ComputeA (Uk,B1, . . . ,Bz,Ax1 , . . . ,Axk) ,

and output Fs(x) =
⌊
s⊤BU,x

⌉
p .

• Constrain(pp, s, C): Compute for b ∈ {0, 1} , i ∈ [z]:

ab := s⊤(Ab+b ·G)+ e⊤1,b ∈ Zmq , bi := s⊤(Bi+ Ci ·G)+ e⊤2,i ∈ Zmq ,

where e← χ. Output KC := (a0, a1,b1, . . . ,bz).
• CEval(pp, KC, x): Compute

bU,x := ComputeC (U , (b1, . . . ,bz, ax1 , . . . , axk) , (C1, . . . , Cz, x1, . . . , xk)) .

Output bbU,xep. 20/28

Correctness

3 bU,x = s⊤(BU,x + C(x)G) + noise.

But what if b·ep errs? This kind of event can be used to solve the
following 1D-SIS problem.

Definition 7 (The One-Dimensional Short Integer Solution problem
ID-SISq,m,t)
Given a uniformly distributed vector v ∈ Zmq , find z ∈ Zm such that

‖z‖ ≤ t and 〈v, z〉 ∈ [−t, t] + qZ.

Theorem 8 ([GPV07])
Let n ∈ N and q =

∏
i∈[n] pi, where all p1 < p2 < · · · < pn are

co-prime. Let m ≥ c · n log q (for some universal constant c).
Assuming that p1 ≥ tω(

√
mnlogn), 1D-SISq,m,t is at least as hard as

SIVPt·Õ(√mn) and GapSVPt·Õ(√mn).

21/28

Achieving Pseudorandomess

7 Pseudorandom on unauthorized points: if C(x) = 1, it is indeed
hard to compute Fs(x), but not pseudorandom.

Solution
Introduce a new independent LWE matrix D in pp and

Eval(pp, s, x) outputs
⌊
s⊤BU,x · G−1(D)

⌉
p .

Now we have

s⊤BU,x · G−1(D) ≈ s⊤ ((BU,x − C(x)G) + noise) · G−1(D)
+ C(x)

(
s⊤D+ noise

)
.

3 When C(x) = 1, the blue part randomizes the expression.
3 Correctness still holds since G−1(D) has low norm.

22/28

Coup de Grace

Fs(x) :=
⌊
s⊤BU,x · G−1(D)

⌉
p .

7 Only for single query, since the randomness from D can only use
once.

Solution
Use admissible hash to deal with the challenge query x∗ differently.

Now this is exactly the construction in [BV15]!

23/28

1-Key Privacy (or Constraint-Hinding)

The Game CH
The game CH between challengerC and adversaryA has three stages:
• Setup. C runs pp ← Setup(1κ), K ← Gen(pp), and set Seval =
Scon = ∅. C sends pp to A.

• Constraind Key Query.
– A send two circuits C0, C1 ∈ C to C
– C toss a coin b $← {0, 1} and sends Kb ← Constrain(K, Cb) to
A.

• Guess. A guesses b′ ∈ {0, 1}.
A wins iff b′ = b.

Definition 9
A CPRF Π is said to satisfy 1-key privacy if for all PPT adversary A, it
holds that

∣∣Pr [Awins]− 1
2
∣∣ = negl(κ).

24/28

State of Art

Figure 2: Taken from [DKN+20] 25/28

Discussion

• Can we support the following functionality?
AddConstraint(pp, KC, C′) 7→ KC∧C′ .

• Support more collusion.
• Achieving adaptive security.
• CPRF from other assumptions?

26/28

References i

D. Boneh, Craig Gentry, S. Gorbunov, S. Halevi, V. Nikolaenko,
G. Segev, V. Vaikuntanathan, and Dhinakaran Vinayagamurthy,
Fully key-homomorphic encryption, arithmetic circuit abe and
compact garbled circuits, EUROCRYPT, 2014.

D. Boneh, Kevin Lewi, H. Montgomery, and A. Raghunathan, Key
homomorphic prfs and their applications, CRYPTO, 2013.

Abhishek Banerjee and Chris Peikert, New and improved
key-homomorphic pseudorandom functions, Annual Cryptology
Conference, Springer, 2014, pp. 353–370.

Abhishek Banerjee, Chris Peikert, and Alon Rosen,
Pseudorandom functions and lattices, Annual International
Conference on the Theory and Applications of Cryptographic
Techniques, Springer, 2012, pp. 719–737.

27/28

References ii

Zvika Brakerski and V. Vaikuntanathan, Constrained
key-homomorphic prfs from standard lattice assumptions - or:
How to secretly embed a circuit in your prf, TCC, 2015.

Alex Davidson, Shuichi Katsumata, Ryo Nishimaki, Shota Yamada,
and Takashi Yamakawa, Adaptively secure constrained
pseudorandom functions in the standard model, CRYPTO, 2020.

Craig Gentry, Chris Peikert, and V. Vaikuntanathan, Trapdoors for
hard lattices and new cryptographic constructions, Proceedings
of the fortieth annual ACM symposium on Theory of computing
(2007).

28/28

	Lattice-based PRF
	The Construction in BPR12
	Key-Homomorphic PRFs

	Constrained PRF
	Definitions
	Key-Homomorphic Evaluation
	Construction in BV15

