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Definition of Pseudorandom Functions (PRFs)

Definition 1 (Keyed function)
Let κ be a security parameter. A keyed function with domain
D := {Dκ}κ∈N and range R := {Rκ}κ∈N is a pair of PPT algorithms
(Gen, Eval) where

• Gen(1κ) 7→ K ∈ {0, 1}κ.
• Eval(K, x) 7→ y ∈ Rκ: The evaluation algorithm takes as input
x ∈ Dκ and outputs y ∈ Rκ.

Definition 2 (PRF)
A keyed function Π := (Gen, Eval) is a PRF if for every PPT adversary
A, the following quantity is negligible:∣∣∣∣∣ Pr

K←Gen(1κ)

[
AEval(K,·)(1κ) = 1

]
− Pr

f $←F

[
Af(·)(1κ) = 1

]∣∣∣∣∣ ,
where F is the set of all functions from Dκ to Rκ.
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The Construction in [BPR12]

Construction 1
• Public parameters: moduli q > p.
• D := {0, 1}ℓ ,R := Znp.

• Gen(1κ) 7→ K : Sample a $← Znq and Si ← χn×n for each i ∈ ℓ.
Output K :=

(
a, {Si}i∈[ℓ]

)
.

• Eval(K, x) 7→ y : Parse K :=
(
a, {Si}i∈[ℓ]

)
and output

Fa,S1,...,Sℓ(x) :=
⌊
a⊤ ·

ℓ∏
i=1

Sxii

⌉
p

∈ Znp.
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Proof Outline

• Replace Fa,S1,...,Sℓ(x) with

F̃a,S1,...,Sℓ(x) :=
⌊
(a⊤Sx11 + x1 · e⊤x1 ) ·

ℓ∏
i=2

Sxii

⌉
p

=

⌊
a⊤

ℓ∏
i=1

Sxi1 + x1 · e⊤x1 ·
ℓ∏
i=2

Sxii

⌉
p

.

• Since the error term is small, after rounding, F̃(x) = F(x) on all
queries w.h.p..

• Replace (a, a⊤S1 + e⊤x1 ) with uniform (u0,u1). That is, we now
output

F′a,S1,...,Sℓ(x) :=
⌊
ux1 ·

ℓ∏
i=2

Sxii

⌉
p

.

• Repeat for S2, . . . , Sℓ, we get F′′′′(x) = buxep, which is a uniformly
random function.
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Key-Homomorphic Construction [BLMR13]

Construction 2

• Public parameters: B0,B1 $← {0, 1}m×m and moduli q > p.
• D := {0, 1}ℓ ,R := Zmp .

• Gen(1κ) 7→ K ∈ Zmq : Sample s $← Zmq and output K := s.
• Eval(s, x ∈ {0, 1}ℓ): Output

Fs(x) :=
⌊
s⊤

ℓ∏
i=1

Bxi

⌉
p

∈ Zmp .

• Almost key-homomorphic:

Fs1+s2(x) = Fs1(x) + Fs2(x) + {−1, 0, 1}
m
.

• The proof strategy is similar to [BPR12]: introduce short errors
that vanishes after rounding.
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Proof Outline [BLMR13]

Fs(x) :=
⌊
s⊤

ℓ∏
i=1

Bxi

⌉
p

≈s

⌊
(s⊤Bx1 + ex1) ·

ℓ∏
i=2

Bxi

⌉
p

≈c

⌊
ux1 ·

ℓ∏
i=2

Bxi

⌉
p

≈c · · · ≈c buxep = U(x).

• Note that the public matrix B0,B1 is sampled from {0, 1}m×m

(not Zn×nq ). This guarantees the error we introduced will not be
amplified when multiplied by Bi.

• By setting m ≈ n log q, this can be reduced to the standard LWE
with dimension n.

7 LWE approx factor α grows exponentially in input length ℓ.
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Gadget Trapdoors, Rewind

Recall that the gadget matrix is defined as

G := In ⊗ g ∈ Zn×nℓq ,

where ℓ = dlog qe and g := (1, 2, 4, . . . , 2ℓ−1) ∈ Zℓ
q.

• If x ∈ {0, 1}ℓ is the binary decomposition of u ∈ Zq, we have
〈g, x〉 = u.

• View x ∈ {0, 1}nℓ as n blocks: x = (x{1}, . . . , x{n}), where each
block has length ℓ, i.e., x{i} ∈ {0, 1}ℓ. Then Gx = u ∈ Znq simply
says: x{i} is the binary decomposition of ui.

• G−1 is the “decomposition” function defined as:

G−1 : Znq → Znℓ

u 7→ a short x such that Gx = u.

6/28



[BP14]: A Tree Enjoys Better Parameter :)

Construction 3

• Public parameters: A0,A1 ∈ Zn×nℓq , a binary tree T, and a moduli
q ≥ p.

• D := {0, 1}|T| ,R := Znℓp , where |T| := number of leaves in T.

• Gen(1κ)→ K ∈ Znq : Sample s
$← Znq and output s.

• Eval(s, x)→ y : Output ⌊
s⊤ · AT(x)

⌉
∈ Znℓp .

AT : {0, 1}|T| → Zn×nℓq is defined recursively as

AT(a) :=
{
Ax if |T| = 1,
AT.l(x.l) · G−1(AT.r(x.r)), otherwise,

where we parse x := x.l‖x.r for x.l ∈ {0, 1}|T.l| , x.r ∈ {0, 1}|T.r|.
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Fs(x) :=
⌊
s⊤ · AT(x)

⌉
∈ Znℓp where

AT(a) :=
{
Ax if |T| = 1,
AT.l(x.l) · G−1(AT.r(x.r)), otherwise.

• Sequentiality s(T) (the “right depth” of T): Circuit depth of PRF is
proportional to s(T).

• Expansion e(T) (the “left depth” of T): LWE approx factor is
exponential in e(T).

• Max input length = max number of leaves =
(e+s
e
)
.
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Proof Idea

Consider the leftmost path:

Fs(x) =
⌊
s⊤Ax0 · G−1(AT1(

−→x1 )) · · ·
⌉
p

≈s
⌊
(s⊤Ax0 + ex0) · G−1(AT1(

−→x1 )) · · ·
⌉
p

≈c
⌊
u⊤x0 · G

−1(AT1(
−→x1 )) · · ·

⌉
p . (∗)

• Problem:
{
AT1(
−→x1 )

}
−→x1∈{0,1}w

is not independent unless
w := |−→x1 | = 1.

• A wishful thinking: if u⊤x0 = t⊤x0G, then (∗) =
⌊
t⊤x0 · AT1(

−→x1 ) · · ·
⌉
p .

• However, a uniformly random u is highly likely to be very far
from any vector of the form t⊤G.
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Proof Idea

Solution: Write u⊤ = t⊤G+ v⊤, where v ∈ P(G) and t are uniform
and independent.

Fs(x) is indistinguishable from

F′u0,u1,v0,v1(x) =
⌊
t⊤x0 · AT′(x2‖ · · · ‖xℓ) + v⊤x0 · G

−1(AT1(
−→x1 )) · · ·

⌉
p ,

Figure 1: T′ is the tree obtained from T by removing its leftmost leaf z and
promoting z’s sibling subtree T1 to replace their parent.
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Summary
The common idea in [BLMR13] and [BP14]
• Generate some matrices

{
Ai ∈ Zn×mq

}
i∈[k] as public parameters.

• The key of the PRF is a vector s ∈ Znq.

• To evaluate on the point x ∈ {0, 1}ℓ, one first compute a matrix
Ax ∈ Zn×mq publicly, and output Fs(x) :=

⌊
s⊤Ax

⌉
p.

[BLMR13] can be view as a special case of [BP14] in the following
sense:

• The [BLMR13] construction works as long as the public matrices
B0,B1 is somewhat “short”. Hence, we may generate B0,B1 as
follows:

for i = 1, 2: Bi := G−1(Ai), where Ai
$← Zn×mq .

• This coincides with [BP14] construction by letting T be a
spline-shaped tree, i.e., s(T) = 1.
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Syntax of Constrained PRF

• Let R = {Rκ}κ∈N and D = {Dκ}κ∈N be families of sets
representing the range and domain of the PRF respectively.

• Let C = {Cκ}κ∈N be a family of circuits, where Cκ is a set of
circuits with domain Dκ and range {0, 1}.

Definition 3 (Syntax of CPRF)
A constrained pseudorandom function for C is defined by the five
PPT algorithms Π := (Setup,Gen, Eval, Constrain, CEval) where:

• Setup(1κ) 7→ pp.
• Gen(pp) 7→ K : K is referred to as master key.
• Eval(pp, K, x ∈ D) 7→ y ∈ R.
• Constrain(K, C ∈ C) 7→ KC : KC is referred to as constrained key.
• CEval(pp, KC, x) 7→ y : CEval takes as input a public parameter pp,
a constrained key KC, and an input x ∈ D and outputs y ∈ R.
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Pseudorandom on Constrained Points
The Game PRoCP
The game PRoCP between challenger C and adversary A has five
stages:
• Setup. C runs pp ← Setup(1κ), K ← Gen(pp), and set Seval =
Scon = ∅. C sends pp to A.

• Query. A can adaptively make the two types of queries:
– Evaluation Query. A queries x ∈ D, and C returns y ←
Eval(pp, K, x). C updates Seval := Seval ∪ {x}.

– Constrained Key Query. A queries C ∈ C, andC returns KC ←
Constrain(K, C). C updates Scon := Scon ∪ {C}.

• Challenge. A chooses x∗ ∈ D s.t. x∗ /∈ Seval and C(x∗) = 0 for all
C ∈ Scon. C toss a coin b $← {0, 1}; if b = 0, let y∗ $←R, otherwise,
y∗ ← Eval(pp, K, x∗). ;C returns y∗ to A.

• Query. Any query except for those C ∈ C with C(x∗) = 0.
• Guess. A guess b′ ∈ {0, 1}.
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We say A wins iff b = b′.

Definition 4
A CPRF Π is said to be (adaptively) pseudorandom on constrained
points if for all PPT adversary A, it holds that∣∣Pr [Awins]− 1

2
∣∣ = negl(κ).

The CPRF is selectively pseudorandom if the constraint queries must
be query at the begin of the stage 2.

Definition 5 (Collusion Resistance)
In the game PRoCP, if we can tolerate up to Q constrained key
queries, we say the CPRF is Q-collusion resistance.
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Gadget Trapdoors and Homomorphic Encryption, Revisited

Definition 6
A trapdoor for a parity-check matrix A ∈ Zn×mq is any sufficiently
“short” integer matrix R ∈ Zm×nℓq such that

AR = HG,

for some invertible H ∈ Zn×nq , called the tag of the trapdoor.

Trapdoor Generation

Sample Ā ← Zn×m̄q , a short R̄ ∈ Zm̄×nℓq , and an invertible matrix H ∈
Zn×nq . Set A :=

[
Ā | HG− ĀR̄

]
. Then R :=

[
R̄
I
]
is a trapdoor for A with

tag H.
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Let Ā ∈ Zn×m̄q and define

Ai := ĀRi − xiG, i = 1, 2.

That is,
[ Ri
I
]
is a trapdoor of

[
Ā | Ai

]
with tag xiI.

It holds that

A+ := A1 + A2 = Ā(R1 + R2︸ ︷︷ ︸
:=R+

)− (x1 + x2)G,

and

A× := −A1 · G−1(A2) = −(ĀR1 − x1G) · G−1(A2)
= −Ā · R1G−1(A2) + x1A2
= Ā(x1R2 − R1G−1(A2)︸ ︷︷ ︸

:=R×

)− x1x2G.

In the latter case, we need x1 to be a small integer in order to get a
good-quality trapdoor.
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Homomorphic Evaluation of LWE Ciphertexts

Let s ∈ Znq and for i = 1, 2, let

u⊤i := s⊤(Ai + xiG) + e⊤i ,

where ei ← χm. Then

u⊤+ := u⊤1 + u⊤2 = s⊤((A1 + A2︸ ︷︷ ︸
A+

) + (x1 + x2)G) + e⊤1 + e⊤2︸ ︷︷ ︸
e⊤+

,

and

u⊤× := x1u⊤2 − u⊤1 G−1(A2)
= x1

(
s⊤(A2 + x2G) + e2

)
−
(
s⊤(A1 + x1G) + e1

)
G−1(A2)

= s⊤(−A1 · G−1(A2)︸ ︷︷ ︸
A×

+x1x2G) + e⊤1 G−1(A2)− x1e⊤2︸ ︷︷ ︸
e⊤×

.
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Homomorphic Evaluation [BGG+14]

“Embed” bits x1, . . . , xk into matrices A1, . . . ,Ak ∈ Zn×mq and compute
a circuit C : {0, 1}k → {0, 1} on these matrices.
Homomorphic Evaluation
We have a pair of algorithms (ComputeA, ComputeC) satisfying the fol-
lowing properties:
• ComputeA(C,A1, . . . ,Ak) 7→ AC ∈ Zn×mq .
• ComputeC(C, {Ai, xi,ui}i∈[k]) 7→ uC ∈ Zmq . If ui = s⊤(Ai + xiG) + ei,
then

uC = s⊤(AC + C(x)G) + eC,

where ‖eC‖∞ ≤ (1+m)d ·maxi∈[k] ‖ei‖∞.
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• What we can do: Embed x into some matrices, and compute
something about C(x) when given circuit C.

• Goal: With the constrained key KC for circuit C, we want to
evaluate a function on some point x somehow related to C(x).

Universal Circuit

Suppose that our circuits C :=
{
C : {0, 1}k → {0, 1}

}
can be described

by a string in {0, 1}z. There exists a universal circuit Uk : {0, 1}z ×
{0, 1}k → {0, 1} such that

Uk(C, x) = C(x),∀C ∈ C,∀x ∈ {0, 1}k .
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CPRF: First Attmept

• Gen(1κ, 1z) 7→ (pp, K): Output

pp := ( A0,A1︸ ︷︷ ︸
for input x

,B1, . . . ,Bz︸ ︷︷ ︸
for circuit C

), K := s,

where A0,A1,B1, . . . ,Bz $← Zn×mq and s $← Znq.
• Eval(pp, K = s, x ∈ {0, 1}k) : Compute

BU,x := ComputeA (Uk,B1, . . . ,Bz,Ax1 , . . . ,Axk) ,

and output Fs(x) =
⌊
s⊤BU,x

⌉
p .

• Constrain(pp, s, C): Compute for b ∈ {0, 1} , i ∈ [z]:

ab := s⊤(Ab+b ·G)+ e⊤1,b ∈ Zmq , bi := s⊤(Bi+ Ci ·G)+ e⊤2,i ∈ Zmq ,

where e← χ. Output KC := (a0, a1,b1, . . . ,bz).
• CEval(pp, KC, x): Compute

bU,x := ComputeC (U , (b1, . . . ,bz, ax1 , . . . , axk) , (C1, . . . , Cz, x1, . . . , xk)) .

Output bbU,xep. 20/28



Correctness

3 bU,x = s⊤(BU,x + C(x)G) + noise.

But what if b·ep errs? This kind of event can be used to solve the
following 1D-SIS problem.

Definition 7 (The One-Dimensional Short Integer Solution problem
ID-SISq,m,t)
Given a uniformly distributed vector v ∈ Zmq , find z ∈ Zm such that

‖z‖ ≤ t and 〈v, z〉 ∈ [−t, t] + qZ.

Theorem 8 ([GPV07])
Let n ∈ N and q =

∏
i∈[n] pi, where all p1 < p2 < · · · < pn are

co-prime. Let m ≥ c · n log q (for some universal constant c).
Assuming that p1 ≥ tω(

√
mnlogn), 1D-SISq,m,t is at least as hard as

SIVPt·Õ(√mn) and GapSVPt·Õ(√mn).
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Achieving Pseudorandomess

7 Pseudorandom on unauthorized points: if C(x) = 1, it is indeed
hard to compute Fs(x), but not pseudorandom.

Solution
Introduce a new independent LWE matrix D in pp and

Eval(pp, s, x) outputs
⌊
s⊤BU,x · G−1(D)

⌉
p .

Now we have

s⊤BU,x · G−1(D) ≈ s⊤ ((BU,x − C(x)G) + noise) · G−1(D)
+ C(x)

(
s⊤D+ noise

)
.

3 When C(x) = 1, the blue part randomizes the expression.
3 Correctness still holds since G−1(D) has low norm.
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Coup de Grace

Fs(x) :=
⌊
s⊤BU,x · G−1(D)

⌉
p .

7 Only for single query, since the randomness from D can only use
once.

Solution
Use admissible hash to deal with the challenge query x∗ differently.

Now this is exactly the construction in [BV15]!
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1-Key Privacy (or Constraint-Hinding)

The Game CH
The game CH between challengerC and adversaryA has three stages:
• Setup. C runs pp ← Setup(1κ), K ← Gen(pp), and set Seval =
Scon = ∅. C sends pp to A.

• Constraind Key Query.
– A send two circuits C0, C1 ∈ C to C
– C toss a coin b $← {0, 1} and sends Kb ← Constrain(K, Cb) to
A.

• Guess. A guesses b′ ∈ {0, 1}.
A wins iff b′ = b.

Definition 9
A CPRF Π is said to satisfy 1-key privacy if for all PPT adversary A, it
holds that

∣∣Pr [Awins]− 1
2
∣∣ = negl(κ).
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State of Art

Figure 2: Taken from [DKN+20] 25/28



Discussion

• Can we support the following functionality?
AddConstraint(pp, KC, C′) 7→ KC∧C′ .

• Support more collusion.
• Achieving adaptive security.
• CPRF from other assumptions?
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