Lattice-based PRFs and Constrained PRFs

Xinyu Mao
November 13, 2021

Shanghai Jiao Tong Uninversity

Lattice-based PRF
The Construction in [BPR12]
Key-Homomorphic PRFs

Constrained PRF
Definitions
Key-Homomorphic Evaluation

Construction in [BV15]

1/28

Lattice-based PRF

Lattice-based PRF
The Construction in [BPR12]
Key-Homomorphic PRFs

1/28

Definition of Pseudorandom Functions (PRFs)

Definition 1 (Keyed function)

Let x be a security parameter. A with domain

D :={Dy},cy and range R := {Ry},.cy IS @ pair of PPT algorithms
(Gen, Eval) where

e Gen(17) — K € {0,1}".

e Eval(K,x) — y € R,: The evaluation algorithm takes as input
X € D, and outputs y € R..

Definition 2 (PRF)
A keyed function N := (Gen, Eval) is a if for every PPT adversary
A, the following quantity is negligible:

P [ARRI(1) = 1) — pr [A0(17) =1]

K<+Gen(1%) f<‘4]-‘

Y

where F is the set of all functions from D,, to R,..
1/28

The Construction in [BPR12]

Construction 1

e Public parameters: moduli g > p.
o D:={0,1}",R:=12].

e Gen(1®) — K : Sample a & Zg and S; < x"*" for each i € L.
Output K := (a, {Si}iem)-

e Eval(K,x) — y: Parse K := (a, {Si}ie[f]) and output

4
Fas;,..s(X) == {aT ' Hsﬂ € Zp.
i=1

P

2/28

Proof Outline

e Replace Fa5s,,....s,(X) with

4
Fa,sm___7sé (X) = {(aTS? + Xq e;) . HST'-‘
p

i=2
4 4
T X; T X
- {a [IsY +x-ef -Hsi'-‘ :
i=1 i,

e Since the error term is small, after rounding, F(x) = F(x) on all
queries w.h.p..

e Replace (a,a’S; + e;) with uniform (uo, uq). That is, we now
output

Y4
/ . Xi
asi,...s,(X) == \‘UXW 'Hsi’-‘
i

e RepeatforS,,...,S,, we get F"(x) = Lux]p, which is a uniformly
random function.

3/28

Key-Homomorphic Construction [BLMR13]

Construction 2

e Public parameters: By, B; < {0,1}™*™ and moduli q > p.
D:={0,1}", R :=12].

e Gen(1%) — K € Zg : Sample s & Zg and output K :=s.
Eval(s, x € {0,1}"): Output

4
Fs(x) := {ST 11 BX,-‘ €zl
=1

p

Almost key-homomorphic:
F51+57(X) = FSW (X) + FS?(X) + {_17 O? 1}m .

The proof strategy is similar to [BPR12]: introduce short errors
that vanishes after rounding.

4/28

Proof Outline [BLMR13]

¢ ¢
Fs(x) := \‘ST H BX‘-‘ Rls \‘(STBX1 +e)- H BX,-‘
=1 p

p =2

¢
R~ {wa H BXW SRS Lux}p = U(x).
i=2

p

¢ Note that the public matrix B, By is sampled from {0,1}™*™
(not Zg*"). This guarantees the error we introduced will not be
amplified when multiplied by B;.

e By setting m =~ nlog g, this can be reduced to the standard LWE
with dimension n.

X LWE approx factor o grows exponentially in input length £.

5/28

Gadget Trapdoors, Rewind

Recall that the gadget matrix is defined as
G:=1l,®geZg™",

where £ = [logq] and g := (1,2,4,...,2"") e Z.

e Ifx € {0,1}" is the binary decomposition of u € Zq, Wwe have
(g,x) = u.

e View x € {0,1}"" as n blocks: x = (X{13, - - -, X{n}), Where each
block has length /, i.e, Xy € {0,1}4. Then Gx = u € Zg simply
says: Xg; is the binary decomposition of u;.

e G 'is the “decomposition” function defined as:

G ':zy 27"
u — a short x such that Gx = u.

6/28

[BP14]: A Tree Enjoys Better Parameter :)

Construction 3

e Public parameters: Aq,A; € ZQX”E, a binary tree T, and a moduli
q=p.
e D:={0,1} R:= Zjyt, where |T| := number of leaves in T.

e Gen(1®) — K€ Z2 : Sample s & 77 and output s.
q q

e Eval(s,x) — y: Output

|s” - Ar(X)] € Zp".

Ar: {0, 1}/ — 77X is defined recursively as
A if |T] =1,
Ar(a) =4 " m 4
Ar(x.l)- GT(Ar,(x.r)), otherwise,

where we parse x := x.l||x.r for x.[€ {071}‘”' X E {0,1}”'“,

7/28

Fs(x) == [s" - Ar(x)] € Zp* where

) B if [T = 1,
r(a) == . .
A7 (x.l) - G'(Ar(x.r)), otherwise.

e Sequentiality s(T) (the “right depth” of T): Circuit depth of PRF is
proportional to s(T).

e Expansion e(T) (the “left depth” of T): LWE approx factor is
exponential in e(T).

e Max input length = max number of leaves = (°7°).

8/28

Proof Idea

LS \! Consider the leftmost path:
a . Fo(x) = [sT A -G (AR (XD) -],
, o
[} A s L(STAXO I eXo) . G_1(AT1(Y1>)) .. .—‘p

A G ~e [u) 67 ARG, ()

Problem: {Ar,(x7)}
wi= x| = 1.

A wishful thinking: if ul = t[G, then (x) = [t] - Ar,(X]) - '1;;‘
However, a uniformly random u is highly likely to be very far
from any vector of the form t™G.

is not independent unless

X {01}

9/28

Proof Idea

Solution: Writeu” =t"G+v', where v € P(G) and t are uniform
and independent.

Fs(x) is indistinguishable from

Flo o (%) = [t - Ar (el -+ xe) + vy, - 67 (AR () -],

/AA ..MA

Figure 1: T’ is the tree obtained from T by removing its leftmost leaf z and
promoting Z's sibling subtree T, to replace their parent.

10/28

The common idea in [BLMR13] and [BP14]

e Generate some matrices {A,- € ZSX’”} as public parameters.

i€[R]
e The key of the PRF is a vector s € Zj.
e To evaluate on the point x € {0,1}", one first compute a matrix

A € Zg™*™ publicly, and output Fs(x) := LSTAX]p.

[BLMR13] can be view as a special case of [BP14] in the following
sense:

e The [BLMR13] construction works as long as the public matrices
Bg, B1 is somewhat “short”. Hence, we may generate By, By as
follows:

fori=1,2: B; ;== G'(A)), where A, & Zy<".

e This coincides with [BP14] construction by letting T be a
spline-shaped tree, i.e., s(T) = 1.

11/28

Constrained PRF

Constrained PRF
Definitions
Key-Homomorphic Evaluation

Construction in [BV15]

12/28

Syntax of Constrained PRF

o Let R = {R,},cy and D = {D,.}, oy be families of sets
representing the range and domain of the PRF respectively.

o LetC = {Cu},.cn be a family of circuits, where Cy is a set of
circuits with domain D, and range {0, 1}.

Definition 3 (Syntax of CPRF)

A is defined by the five
PPT algorithms N := (Setup, Gen, Eval, Constrain, CEval) where:

e Setup(1%) — pp.

Gen(pp) — K: K'is referred to as

Eval(pp,K,x € D) — y € R.

Constrain(K, C € C) — K¢ : K¢ is referred to as

CEval(pp, K¢, x) — y : CEval takes as input a public parameter pp,
a constrained key K¢, and an input x € D and outputs y € R.

12/28

Pseudorandom on Constrained Points

The Game PRoCP
The game PRoCP between challenger € and adversary A has five
stages:

e Setup. € runs pp < Setup(1”), K < Gen(pp), and set Seyq =
Scon = 0. © sends pp to A.

Query. A can make the two types of queries:

- Evaluation Query. A queries x € D, and C returns y <«
Eval(pp, K, x). € updates Seya := Seva U {x}.
- Constrained Key Query. A queries C € C, and € returns K¢ +
Constrain(K, C). € updates Scon := Scon U {C}.
Challenge. A chooses x* € D st. x* ¢ Seyq and C(x*) = 0 for all
C e Seon. Ctossacoinb & {0,1};if b =0, let y* & R, otherwise,
yx < Eval(pp, K, x*). ;C returns yx* to A.

Query. Any query except for those C € C with C(x*) = 0.

Guess. A guess b’ € {0,1}.
13/28

We say A wins iff b =b'.

Definition 4

A CPRF MM is said to be (adaptively) pseudorandom on constrained
points if for all PPT adversary A, it holds that
|Pr[Awins] — 3| = negl(x).

The CPRF is selectively pseudorandom if the constraint queries must
be query at the begin of the stage 2.

Definition 5 (Collusion Resistance)
In the game PRoCP, if we can tolerate up to Q constrained key
queries, we say the CPRF is O-collusion resistance.

14/28

Gadget Trapdoors and Homomorphic Encryption, Revisited

Definition 6

A for a parity-check matrix A € Zg*™ is any sufficiently
“short” integer matrix R € Z7*" such that

AR = HG,

for some invertible H € Zg*", called the tag of the trapdoor.

Trapdoor Generation

Sample A < Zg*™, a short R € ZI™*", and an invertible matrix H €
Zg*". Set A := [A| HG — AR]. Then R := [R] is a trapdoor for A with
tag H.

15/28

Let A € Z7*™ and define
A = AR,’ —X,‘G,iZ 1,2.

That is, [%] is a trapdoor of [A | Aj] with tag xl.

It holds that
ALy =A+A = A(R1 al Rz) — (X1 +X2)G,
=Ry
and

A, = —A;-G'(A)) = —(AR; — x1G) - GT'(A,)
= —A-RGT(A) + XA,
= A(x1R; — RiGT'(A;)) — x1x,G.
In the latter case, we need x4 to be a small integer in order to get a
good-quality trapdoor.

16/28

Homomorphic Evaluation of LWE Ciphertexts

Lets e ZQ and fori =1,2, let

where e; < x™. Then
ul :=uf +u) =sT((A+A)+ (x4 +x%)G) +ef +e],
As el
and
ul r==xu; —uf G(Ay)
= Xj (ST(AZ -I-XQG) P ez) = (ST(A1 +XWG) + eW) 671(A2)
=5 (A1 -G (A) +x1%:G) + & GT'(A)) — xe; .
—_————

Ax ei

17/28

Homomorphic Evaluation [BGG*14]

“Embed” bits xy, ..., X, into matrices Aq,..., A, € Zg*™ and compute
a circuit C: {0,1}'? — {0, 1} on these matrices.
Homomorphic Evaluation

We have a pair of algorithms (ComputeA, ComputeC) satisfying the fol-
lowing properties:

o ComputeA(C Aq,...,Ay) = Ac € Zg*™.

o ComputeC(C, {A;, X, Ui}icpq) = Uc € Zf. If uj = sT(A; +XG) + e,
then

uc =s' (Ac + C(X)G) + ec,

where |lecll, < (T4 m)? - maxic[y |1€il| -

18/28

e What we can do: Embed x into some matrices, and compute
something about C(x) when given circuit C.

e Goal: With the constrained key K¢ for circuit C, we want to
evaluate a function on some point x somehow related to C(x).

Universal Circuit

Suppose that our circuits C := {C: {O,1}k — {0,1}} can be described

by a string in {0,1}". There exists a universal circuit Uy : {0,1}" x
{0,1}* = {0,1} such that

Uy (C,X) = C(x),VC € C,Vx € {0,1}*.

19/28

CPRF: First Attmept

e Gen(1%,1%) — (pp, K): Output
pp ::(Ao, A ,B1,...,BZ),KZ: S
—— N——
forinput x for circuit C
where Ag, A1, By, ...,B; & Zg*™ and s & Zg.
e Eval(pp,K=s,x € {0,1}’?) : Compute
By x := ComputeA (U, By, ..., B, Ay, .. Ay,

and output Fs(x) = LSTB%X]D-
e Constrain(pp,s, C): Compute for b € {0,1},i € [Z]:

ap:=s (A, +b-G)+el, €Zy, bj:=s"(Bi+(-G)+e,; €Zy,

where e « x. Output K¢ := (ap, a1, by, ..., b,).
e CEval(pp, Kc,x): Compute

by x := ComputeC (U, (b1,..., bz ax, .- ax), (Crye ooy oo Xay ooy Xk)) -

Output |b .
UtPUt LBl 20/28

Correctness

by x = ST (Bux + C(X)G) + noise.
But what if -], errs? This kind of event can be used to solve the
following 1D-SIS problem.

Definition 7 (The One-Dimensional Short Integer Solution problem
ID-SISq.m.¢)

Given a uniformly distributed vector v € qu, find z € Z™ such that

llz]] < tand (v,z) € [-t,t] + gZ.

Theorem 8 ([GPV07])

letn e Nand g = er[n] p;, where all p1 < p, < --- < p, are
co-prime. Let m > ¢ - nlog g (for some universal constant c).
Assuming that p; > tw(+/mnlogn), 1D-SISq m ¢ Is at least as hard as

21/28

Achieving Pseudorandomess

X Pseudorandom on unauthorized points: if C(x) =1, it is indeed
hard to compute Fs(x), but pseudorandom.

Solution
Introduce a new independent LWE matrix D in pp and

Eval(pp, s,) outputs [s"Byx -G~ '(D)],.

Now we have

STByx -G (D) & s ((Bux — C(X)G) + noise) - G~'(D)
+ C(x) (s" D+ noise).

When C(x) = 1, the blue part randomizes the expression.

Correctness still holds since G='(D) has low norm.

22/28

Coup de Grace

Fs(x) := LSTBM,X : G_1(D)—|D '

X Only for single query, since the randomness from D can only use
once.
Solution
Use admissible hash to deal with the challenge query x* differently.

Now this is exactly the construction in [BV15]!

23/28

1-Key Privacy (or Constraint-Hinding)

The Game CH
The game CH between challenger € and adversary A has three stages:

e Setup. € runs pp + Setup(1”), K + Gen(pp), and set Sgyq =
Scon = (0. € sends pp to A.

e Constraind Key Query.
- A send two circuits Cy, G € Cto €

- Ctoss a coin b & {0,1} and sends K, < Constrain(K, Cp) to
A.

e Guess. A guesses b’ € {0,1}.
A wins iff b’ = b.
Definition 9

A CPRF I is said to satisfy if for all PPT adversary A, it
holds that |Pr[Awins] — 7| = negl().

24/28

State of Art

Table 2: List of existing constructions of CPRFs along with their functionality and the assumptions required.

Adaptive Collusion-resistance Privacy Predicate Assumption
[BW13] x poly of Prefix* OWF
v poly poly LR BDDH & ROM
X poly 0 BF MLDDH
X poly 0 P/poly MLDDH
[KPTZ13] X poly 0 Prefix! OWF
[BGI14] X poly 0 Prefix! OWF
[BZ14] X poly 0 P/poly 10
[HKKW19] v poly 0 P/poly 10 & ROM
[BFPT15] X poly 0 Prefix LWE
[BVI5] X 1 0 P /poly LWE
[HKW15] v poly 0 Puncturing SGH & 10
[BLW17] X poly 1 (weak) Puncturing MLDDH
X poly 1 (weak) BF MLDDH
X poly poly P /poly 10
[BTVW17] X 1 1 P /poly LWE
[CC17] X 1 1 BF LWE
X 1 1 NC! LWE
[AMNT18] X 1 1 BF DDH
X 1 0 NC! L-DDHI
v 1 1 BF ROM
v i 0 NC! L-DDHI & ROM
[CVWIg] X 1 1 NCT LWE
[PS18] x 1 1 P /poly LWE
[AMN*19] v 1 0 NCT SGH & 10
Section 4 v o(1) 1 (weak) #CNF (D BF) OWF
Section 5 v 1 1 (weak) 1P LWE
Section 6 v 0(1) 0 P/poly LWE & 10

Figure 2: Taken from [DKN*20] sl

Discussion

Can we support the following functionality?
AddConstraint(pp, K¢, C') — Keacr-
Support more collusion.

Achieving adaptive security.
e CPRF from other assumptions?

26/28

References i

@ D. Boneh, Craig Gentry, S. Gorbunov, S. Halevi, V. Nikolaenko,
G. Segey, V. Vaikuntanathan, and Dhinakaran Vinayagamurthy,
Fully key-homomorphic encryption, arithmetic circuit abe and
compact garbled circuits, EUROCRYPT, 2014.

[D.Boneh, Kevin Lewi, H. Montgomery, and A. Raghunathan, Key
homomorphic prfs and their applications, CRYPTO, 2013.

@ Abhishek Banerjee and Chris Peikert, New and improved
key-homomorphic pseudorandom functions, Annual Cryptology
Conference, Springer, 2014, pp. 353-370.

5 Abhishek Banerjee, Chris Peikert, and Alon Rosen,
Pseudorandom functions and lattices, Annual International
Conference on the Theory and Applications of Cryptographic
Techniques, Springer, 2012, pp. 719-737.

27/28

References ii

@ Zvika Brakerski and V. Vaikuntanathan, Constrained
key-homomorphic prfs from standard lattice assumptions - or:
How to secretly embed a circuit in your prf, TCC, 2015.

3 Alex Davidson, Shuichi Katsumata, Ryo Nishimaki, Shota Yamada,
and Takashi Yamakawa, Adaptively secure constrained
pseudorandom functions in the standard model, CRYPTO, 2020.

@ Craig Gentry, Chris Peikert, and V. Vaikuntanathan, Trapdoors for
hard lattices and new cryptographic constructions, Proceedings
of the fortieth annual ACM symposium on Theory of computing
(2007).

28/28

	Lattice-based PRF
	The Construction in BPR12
	Key-Homomorphic PRFs

	Constrained PRF
	Definitions
	Key-Homomorphic Evaluation
	Construction in BV15

