Lattice-based PRFs and Constrained PRFs

Xinyu Mao
November 13, 2021
Shanghai Jiao Tong Uninversity

Lattice-based PRF
The Construction in [BPR12]
Key-Homomorphic PRFs

Constrained PRF
Definitions
Key-Homomorphic Evaluation
Construction in [BV15]

Lattice-based PRF

Lattice-based PRF
The Construction in [BPR12]
Key-Homomorphic PRFs

Constrained PRF

Definition of Pseudorandom Functions (PRFs)

Definition 1 (Keyed function)

Let κ be a security parameter. A keyed function with domain
$\mathcal{D}:=\left\{\mathcal{D}_{\kappa}\right\}_{\kappa \in \mathbb{N}}$ and range $\mathcal{R}:=\left\{\mathcal{R}_{\kappa}\right\}_{\kappa \in \mathbb{N}}$ is a pair of PPT algorithms
(Gen, Eval) where

- $\operatorname{Gen}\left(1^{\kappa}\right) \mapsto K \in\{0,1\}^{\kappa}$.
- Eval $(K, x) \mapsto y \in \mathcal{R}_{\kappa}$: The evaluation algorithm takes as input $x \in \mathcal{D}_{\kappa}$ and outputs $y \in \mathcal{R}_{\kappa}$.

Definition 2 (PRF)

A keyed function Π := (Gen, Eval) is a PRF if for every PPT adversary \mathcal{A}, the following quantity is negligible:

$$
\left|\operatorname{Pr}_{K \leftarrow \operatorname{Gen}\left(1^{\kappa}\right)}\left[\mathcal{A}^{\operatorname{Eval}(K, \cdot)}\left(1^{\kappa}\right)=1\right]-\operatorname{Pr}_{f \leftarrow \mathcal{F}}\left[\mathcal{A}^{f(\cdot)}\left(1^{\kappa}\right)=1\right]\right|,
$$

where \mathcal{F} is the set of all functions from \mathcal{D}_{κ} to \mathcal{R}_{κ}.

The Construction in [BPR12]

Construction 1

- Public parameters: moduli $q>p$.
- $\mathcal{D}:=\{0,1\}^{\ell}, \mathcal{R}:=\mathbb{Z}_{p}^{n}$.
- Gen $\left(1^{\kappa}\right) \mapsto K$: Sample a ${ }_{\leftarrow}^{\&} \mathbb{Z}_{q}^{n}$ and $\mathrm{S}_{i} \leftarrow \chi^{n \times n}$ for each $i \in \ell$. Output $K:=\left(\mathrm{a},\left\{\mathrm{S}_{\mathrm{i}}\right\}_{i \in[\ell]}\right)$.
- Eval $(K, x) \mapsto y:$ Parse $K:=\left(\mathrm{a},\left\{\mathrm{S}_{\mathrm{i}}\right\}_{i \in[\ell]}\right)$ and output

$$
F_{\mathrm{a}, \mathrm{~S}_{1}, \ldots, \mathrm{~S}_{\ell}}(x):=\left\lfloor\mathrm{a}^{\top} \cdot \prod_{i=1}^{\ell} \mathrm{S}_{i}^{x_{i}}\right\rceil_{p} \in \mathbb{Z}_{p}^{n}
$$

Proof Outline

- Replace $F_{\mathrm{a}, \mathrm{s}_{1}, \ldots, \mathrm{~s}_{\ell}}(x)$ with

$$
\begin{aligned}
\widetilde{F}_{\mathrm{a}, \mathrm{~S}_{1}, \ldots, \mathrm{~S}_{\ell}}(x) & :=\left\lfloor\left(\mathrm{a}^{\top} \mathbf{S}_{1}^{x_{1}}+x_{1} \cdot \mathbf{e}_{x_{1}}^{\top}\right) \cdot \prod_{i=2}^{\ell} \mathrm{S}_{i}^{\mathrm{X}_{i}}\right\rceil_{p} \\
& =\left\lfloor\mathrm{a}^{\top} \prod_{i=1}^{\ell} \mathrm{S}_{1}^{x_{i}}+x_{1} \cdot \mathbf{e}_{x_{1}}^{\top} \cdot \prod_{i=2}^{\ell} \mathrm{S}_{i}^{x_{i}}\right\rceil_{p} .
\end{aligned}
$$

- Since the error term is small, after rounding, $\widetilde{F}(x)=F(x)$ on all queries w.h.p..
- Replace $\left(a, a^{\top} \mathbf{S}_{1}+\mathbf{e}_{x_{1}}^{\top}\right)$ with uniform $\left(\mathbf{u}_{0}, \mathbf{u}_{1}\right)$. That is, we now output

$$
F_{\mathrm{a}, \mathrm{~S}_{1}, \ldots, \mathrm{~s}_{\ell}}^{\prime}(x):=\left\lfloor\mathrm{u}_{x_{1}} \cdot \prod_{i=2}^{\ell} \mathrm{S}_{i}^{x_{i}}\right\rceil_{p} .
$$

- Repeat for S_{2}, \ldots, S_{ℓ}, we get $F^{\prime \prime \prime \prime}(x)=\left\lfloor u_{x}\right\rceil_{p}$, which is a uniformly random function.

Key-Homomorphic Construction [BLMR13]

Construction 2

- Public parameters: $\mathrm{B}_{0}, \mathrm{~B}_{1} \stackrel{\$}{\leftarrow}\{0,1\}^{m \times m}$ and moduli $q>p$.
- $\mathcal{D}:=\{0,1\}^{\ell}, \mathcal{R}:=\mathbb{Z}_{p}^{m}$.
- Gen $\left(1^{\kappa}\right) \mapsto K \in \mathbb{Z}_{q}^{m}$: Sample $s \stackrel{\$}{\leftarrow} \mathbb{Z}_{q}^{m}$ and output $K:=\mathbf{s}$.
- Eval($s, x \in\{0,1\}^{\ell}$): Output

$$
F_{s}(x):=\left\lfloor\mathbf{s}^{\top} \prod_{i=1}^{\ell} \mathrm{B}_{x_{i}}\right\rceil_{p} \in \mathbb{Z}_{p}^{m} .
$$

- Almost key-homomorphic:

$$
F_{s_{1}+s_{2}}(x)=F_{s_{1}}(x)+F_{s_{2}}(x)+\{-1,0,1\}^{m} .
$$

- The proof strategy is similar to [BPR12]: introduce short errors that vanishes after rounding.

Proof Outline [BLMR13]

$$
\begin{aligned}
F_{\mathrm{s}}(x) & :=\left\lfloor\mathrm{s}^{\top} \prod_{i=1}^{\ell} \mathrm{B}_{x_{i}}\right\rceil_{p} \approx_{s}\left\lfloor\left(\mathrm{~s}^{\top} \mathrm{B}_{x_{1}}+\mathrm{e}_{x_{1}}\right) \cdot \prod_{i=2}^{\ell} \mathrm{B}_{x_{i}}\right\rceil_{p} \\
& \approx_{c}\left\lfloor\mathrm{u}_{x_{1}} \cdot \prod_{i=2}^{\ell} \mathrm{B}_{x_{i}}\right\rceil_{p} \approx_{c} \cdots \approx_{c}\left\lfloor\mathrm{u}_{x}\right\rceil_{p}=U(x) .
\end{aligned}
$$

- Note that the public matrix $\boldsymbol{B}_{0}, \boldsymbol{B}_{1}$ is sampled from $\{0,1\}^{m \times m}$ (not $\mathbb{Z}_{q}^{n \times n}$). This guarantees the error we introduced will not be amplified when multiplied by B_{i}.
- By setting $m \approx n \log q$, this can be reduced to the standard LWE with dimension n.
\boldsymbol{x} LWE approx factor α grows exponentially in input length ℓ.

Gadget Trapdoors, Rewind

Recall that the gadget matrix is defined as

$$
\mathrm{G}:=\mathrm{I}_{n} \otimes \mathrm{~g} \in \mathbb{Z}_{q}^{n \times n \ell},
$$

where $\ell=\lceil\log q\rceil$ and $g:=\left(1,2,4, \ldots, 2^{\ell-1}\right) \in \mathbb{Z}_{q}^{\ell}$.

- If $x \in\{0,1\}^{\ell}$ is the binary decomposition of $u \in \mathbb{Z}_{q}$, we have $\langle\mathrm{g}, \mathrm{x}\rangle=u$.
- View $x \in\{0,1\}^{n \ell}$ as n blocks: $x=\left(x_{\{1\}}, \ldots, x_{\{n\}}\right)$, where each block has length ℓ, i.e., $\mathrm{X}_{\{i\}} \in\{0,1\}^{\ell}$. Then $\mathrm{Gx}=\mathrm{u} \in \mathbb{Z}_{q}^{n}$ simply says: $\mathbf{x}_{\{i\}}$ is the binary decomposition of \mathbf{u}_{i}.
- G^{-1} is the "decomposition" function defined as:

$$
\begin{aligned}
\mathrm{G}^{-1}: \mathbb{Z}_{q}^{n} & \rightarrow \mathbb{Z}^{\text {ne }} \\
\mathrm{u} & \mapsto \text { a short } \mathrm{x} \text { such that } \mathrm{Gx}=\mathrm{u} .
\end{aligned}
$$

[BP14]: A Tree Enjoys Better Parameter :)

Construction 3

- Public parameters: $\mathrm{A}_{0}, \mathrm{~A}_{1} \in \mathbb{Z}_{q}^{n \times n \ell}$, a binary tree T, and a moduli $q \geq p$.
- $\mathcal{D}:=\{0,1\}^{|T|}, \mathcal{R}:=\mathbb{Z}_{p}^{n \ell}$, where $|T|:=$ number of leaves in T.
- Gen $\left(1^{\kappa}\right) \rightarrow K \in \mathbb{Z}_{q}^{n}$: Sample $s{ }^{\Phi} \mathbb{Z}_{q}^{n}$ and output \mathbf{s}.
- Eval $(\mathrm{s}, \mathrm{x}) \rightarrow \mathrm{y}$: Output

$$
\left\lfloor\mathbf{s}^{\top} \cdot \mathbf{A}_{T}(x)\right\rceil \in \mathbb{Z}_{p}^{n \ell} .
$$

$A_{T}:\{0,1\}^{|T|} \rightarrow \mathbb{Z}_{q}^{n \times n \ell}$ is defined recursively as

$$
\mathrm{A}_{T}(a):= \begin{cases}\mathrm{A}_{x} & \text { if }|T|=1, \\ \mathrm{~A}_{T . l}(x . l) \cdot \mathrm{G}^{-1}\left(\mathrm{~A}_{T . r}(x . r)\right), & \text { otherwise },\end{cases}
$$

where we parse $x:=x . l \mid \| x . r$ for $x . l \in\{0,1\}^{|T \cdot l|}, x . r \in\{0,1\}^{|T . r|}$.
$F_{\mathbf{s}}(x):=\left\lfloor\mathbf{s}^{\top} \cdot \mathbf{A}_{T}(x)\right\rceil \in \mathbb{Z}_{p}^{n \ell}$ where

$$
\mathrm{A}_{T}(a):= \begin{cases}\mathrm{A}_{x} & \text { if }|T|=1, \\ \mathrm{~A}_{T . l}(x . l) \cdot \mathrm{G}^{-1}\left(\mathrm{~A}_{T . r}(x . r)\right), & \text { otherwise } .\end{cases}
$$

- Sequentiality $s(T)$ (the "right depth" of T): Circuit depth of PRF is proportional to $s(T)$.
- Expansion $e(T)$ (the "left depth" of T): LWE approx factor is exponential in $e(T)$.
- Max input length $=$ max number of leaves $=\binom{e+s}{e}$.

Proof Idea

Consider the leftmost path:

$$
\begin{aligned}
F_{\mathrm{s}}(x) & =\left\lfloor\mathrm{s}^{\top} \mathrm{A}_{x_{0}} \cdot \mathrm{G}^{-1}\left(\mathrm{~A}_{T_{1}}\left(\overrightarrow{x_{1}}\right)\right) \cdots\right\rceil_{p} \\
& \approx_{\mathrm{s}}\left\lfloor\left(\mathrm{~s}^{\top} \mathrm{A}_{x_{0}}+\mathrm{e}_{x_{0}}\right) \cdot \mathrm{G}^{-1}\left(\mathrm{~A}_{T_{1}}\left(\overrightarrow{x_{1}}\right)\right) \cdots\right\rceil_{p} \\
& \approx_{c}\left\lfloor\mathrm{u}_{x_{0}}^{\top} \cdot \mathrm{G}^{-1}\left(\mathrm{~A}_{T_{1}}\left(\overrightarrow{x_{1}}\right)\right) \cdots\right\rceil_{p} \cdot(*)
\end{aligned}
$$

- Problem: $\left\{A_{T_{1}}\left(\overrightarrow{x_{1}}\right)\right\}_{\overrightarrow{x_{i}} \in\{0,1\}^{w}}$ is not independent unless $w:=\left|\overrightarrow{x_{1}}\right|=1$.
- A wishful thinking: if $\mathbf{u}_{x_{0}}^{\top}=\mathrm{t}_{x_{0}}^{\top} \mathrm{G}$, then $(*)=\left\lfloor\mathrm{t}_{\mathrm{x}_{0}}^{\top} \cdot \mathrm{A}_{T_{1}}\left(\overrightarrow{x_{1}}\right) \cdots\right\rangle_{p}$.
- However, a uniformly random u is highly likely to be very far from any vector of the form $t^{\top} G$.

Proof Idea

Solution: Write $\mathbf{u}^{\top}=\mathrm{t}^{\top} \mathrm{G}+\mathrm{v}^{\top}$, where $\mathbf{v} \in \mathcal{P}(\mathrm{G})$ and t are uniform and independent.
$F_{\mathrm{s}}(x)$ is indistinguishable from

$$
F_{\mathbf{u}_{0}, \mathbf{u}_{1}, \mathbf{v}_{0}, \mathbf{v}_{1}}^{\prime}(x)=\left\lfloor\mathbf{t}_{x_{0}}^{\top} \cdot \mathrm{A}_{T^{\prime}}\left(x_{2}\|\cdots\| x_{\ell}\right)+\mathbf{v}_{x_{0}}^{\top} \cdot \mathrm{G}^{-1}\left(\mathrm{~A}_{T_{1}}\left(\overrightarrow{x_{1}}\right)\right) \cdots\right\rceil_{p}
$$

\square

Figure 1: T^{\prime} is the tree obtained from T by removing its leftmost leaf z and promoting z's sibling subtree T_{1} to replace their parent.

Summary

The common idea in [BLMR13] and [BP14]

- Generate some matrices $\left\{\mathrm{A}_{i} \in \mathbb{Z}_{q}^{n \times m}\right\}_{i \in[k]}$ as public parameters.
- The key of the PRF is a vector $\mathbf{s} \in \mathbb{Z}_{q}^{n}$.
- To evaluate on the point $x \in\{0,1\}^{\ell}$, one first compute a matrix $A_{x} \in \mathbb{Z}_{q}^{n \times m}$ publicly, and output $F_{s}(x):=\left\lfloor s^{\top} A_{x}\right\rceil_{p}$.
[BLMR13] can be view as a special case of [BP14] in the following sense:
- The [BLMR13] construction works as long as the public matrices B_{0}, B_{1} is somewhat "short". Hence, we may generate B_{0}, B_{1} as follows:

$$
\text { for } i=1,2: \mathrm{B}_{i}:=\mathrm{G}^{-1}\left(\mathrm{~A}_{i}\right) \text {, where } \mathrm{A}_{i} \stackrel{\$}{\stackrel{\mathbb{Z}}{q}} \mathbb{Z}_{a}^{n \times m} \text {. }
$$

- This coincides with [BP14] construction by letting T be a spline-shaped tree, i.e., $s(T)=1$.

Constrained PRF

Lattice-based PRF

Constrained PRF
Definitions
Key-Homomorphic Evaluation
Construction in [BV15]

Syntax of Constrained PRF

- Let $\mathcal{R}=\left\{\mathcal{R}_{\kappa}\right\}_{\kappa \in \mathbb{N}}$ and $\mathcal{D}=\left\{\mathcal{D}_{\kappa}\right\}_{\kappa \in \mathbb{N}}$ be families of sets representing the range and domain of the PRF respectively.
- Let $\mathcal{C}=\left\{\mathcal{C}_{\kappa}\right\}_{\kappa \in \mathbb{N}}$ be a family of circuits, where \mathcal{C}_{κ} is a set of circuits with domain \mathcal{D}_{κ} and range $\{0,1\}$.

Definition 3 (Syntax of CPRF)

A constrained pseudorandom function for \mathcal{C} is defined by the five PPT algorithms Π := (Setup, Gen, Eval, Constrain, CEval) where:

- $\operatorname{Setup}\left(1^{\kappa}\right) \mapsto p p$.
- Gen $(p p) \mapsto K: K$ is referred to as master key.
- $\operatorname{Eval}(p p, K, x \in \mathcal{D}) \mapsto y \in \mathcal{R}$.
- Constrain $(K, C \in \mathcal{C}) \mapsto K_{C}: K_{C}$ is referred to as constrained key.
- CEval $\left(p p, K_{C}, x\right) \mapsto y$: CEval takes as input a public parameter pp, a constrained key K_{C}, and an input $x \in \mathcal{D}$ and outputs $y \in \mathcal{R}$.

Pseudorandom on Constrained Points

The Game PRoCP
The game PRoCP between challenger \mathbb{C} and adversary \mathbb{A} has five stages:

- Setup. \mathbb{C} runs $p p \leftarrow \operatorname{Setup}\left(1^{\kappa}\right), K \leftarrow \operatorname{Gen}(p p)$, and set $S_{\text {eval }}=$ $S_{\text {con }}=\emptyset . \mathbb{C}$ sends pp to \mathbb{A}.
- Query. \mathbb{A} can adaptively make the two types of queries:
- Evaluation Query. A queries $x \in \mathcal{D}$, and \mathbb{C} returns $y \leftarrow$ $\operatorname{Eval}(p p, K, x) . \mathbb{C}$ updates $S_{\text {eval }}:=S_{\text {eval }} \cup\{x\}$.
- Constrained Key Query. A queries $C \in \mathcal{C}$, and \mathbb{C} returns $K_{C} \leftarrow$ Constrain (K, C). \mathbb{C} updates $S_{\text {con }}:=S_{\text {con }} \cup\{C\}$.
- Challenge. A chooses $x^{*} \in \mathcal{D}$ s.t. $x^{*} \notin S_{\text {eval }}$ and $C\left(x^{*}\right)=0$ for all $C \in S_{\text {con. }}$. \mathbb{C} toss a coin $b \stackrel{\$}{\leftarrow}\{0,1\}$; if $b=0$, let $y^{*} \stackrel{\$}{\leftarrow} \mathcal{R}$, otherwise, $y * \leftarrow \operatorname{Eval}\left(p p, K, x^{*}\right) . ; \mathbb{C}$ returns $y *$ to \mathbb{A}.
- Query. Any query except for those $C \in \mathcal{C}$ with $C\left(x^{*}\right)=0$.
- Guess. A guess $b^{\prime} \in\{0,1\}$.

We say \mathbb{A} wins iff $b=b^{\prime}$.

Definition 4

A CPRF Π is said to be (adaptively) pseudorandom on constrained points if for all PPT adversary \mathbb{A}, it holds that $\left.\left\lvert\, \operatorname{Pr}[$ Awins $]-\frac{1}{2}\right. \right\rvert\,=\operatorname{negl}(\kappa)$.

The CPRF is selectively pseudorandom if the constraint queries must be query at the begin of the stage 2.

Definition 5 (Collusion Resistance)

In the game PRoCP, if we can tolerate up to Q constrained key queries, we say the CPRF is Q-collusion resistance.

Gadget Trapdoors and Homomorphic Encryption, Revisited

Definition 6

A trapdoor for a parity-check matrix $\mathrm{A} \in \mathbb{Z}_{q}^{n \times m}$ is any sufficiently "short" integer matrix $R \in \mathbb{Z}_{q}^{m \times n \ell}$ such that

$$
A R=H G,
$$

for some invertible $\mathbf{H} \in \mathbb{Z}_{q}^{n \times n}$, called the tag of the trapdoor.

Trapdoor Generation

Sample $\overline{\mathrm{A}} \leftarrow \mathbb{Z}_{q}^{n \times \bar{m}}$, a short $\overline{\mathrm{R}} \in \mathbb{Z}_{q}^{\bar{m} \times n \ell}$, and an invertible matrix $\mathrm{H} \in$ $\mathbb{Z}_{q}^{n \times n}$. Set $A:=[\bar{A} \mid H G-\bar{A} \bar{R}]$. Then $R:=\left[\begin{array}{l}\bar{R} \\ 1\end{array}\right]$ is a trapdoor for A with tag H .

Let $\bar{A} \in \mathbb{Z}_{q}^{n \times \bar{m}}$ and define

$$
\mathrm{A}_{i}:=\overline{\mathrm{A}} \mathbf{R}_{i}-x_{i} \mathbf{G}, i=1,2 .
$$

That is, $\left[\begin{array}{c}\mathrm{R}_{i} \\ 1\end{array}\right]$ is a trapdoor of $\left[\overline{\mathrm{A}} \mid \mathrm{A}_{i}\right]$ with tag $x_{i} \mid$.
It holds that

$$
A_{+}:=A_{1}+A_{2}=\bar{A}(\underbrace{R_{1}+R_{2}}_{:=R_{+}})-\left(x_{1}+x_{2}\right) G,
$$

and

$$
\begin{aligned}
& \mathrm{A}_{\times}:=-\mathrm{A}_{1} \cdot \mathrm{G}^{-1}\left(\mathrm{~A}_{2}\right)=-\left(\overline{\mathrm{A}} \mathrm{R}_{1}-\mathrm{x}_{1} \mathrm{G}\right) \cdot \mathrm{G}^{-1}\left(\mathrm{~A}_{2}\right) \\
& =-\overline{\mathrm{A}} \cdot \mathrm{R}_{1} \mathrm{G}^{-1}\left(\mathrm{~A}_{2}\right)+x_{1} \mathrm{~A}_{2} \\
& =\bar{A}(\underbrace{x_{1} R_{2}-R_{1} G^{-1}\left(A_{2}\right)}_{:=R_{x}})-x_{1} x_{2} G .
\end{aligned}
$$

In the latter case, we need x_{1} to be a small integer in order to get a good-quality trapdoor.

Homomorphic Evaluation of LWE Ciphertexts

Let $\mathbf{s} \in \mathbb{Z}_{q}^{n}$ and for $i=1,2$, let

$$
\mathbf{u}_{i}^{\top}:=\mathbf{s}^{\top}\left(\mathbf{A}_{i}+x_{i} \mathbf{G}\right)+\mathbf{e}_{i}^{\top},
$$

where $\mathbf{e}_{i} \leftarrow \chi^{m}$. Then

$$
\mathbf{u}_{+}^{\top}:=\mathbf{u}_{1}^{\top}+\mathbf{u}_{2}^{\top}=\mathbf{s}^{\top}((\underbrace{\mathrm{A}_{1}+\mathrm{A}_{2}}_{\mathrm{A}_{+}})+\left(x_{1}+x_{2}\right) \mathrm{G})+\underbrace{\mathbf{e}_{1}^{\top}+\mathbf{e}_{2}^{\top}}_{\mathbf{e}_{+}^{\top}}
$$

and

$$
\begin{aligned}
\mathbf{u}_{\times}^{\top} & :=x_{1} \mathbf{u}_{2}^{\top}-\mathbf{u}_{1}^{\top} \mathbf{G}^{-1}\left(\mathbf{A}_{2}\right) \\
& =x_{1}\left(\mathbf{s}^{\top}\left(\mathbf{A}_{2}+x_{2} \mathbf{G}\right)+\mathbf{e}_{2}\right)-\left(\mathbf{s}^{\top}\left(\mathbf{A}_{1}+x_{1} \mathbf{G}\right)+\mathbf{e}_{1}\right) \mathbf{G}^{-1}\left(\mathbf{A}_{2}\right) \\
& =\mathbf{s}^{\top}(\underbrace{-\mathbf{A}_{1} \cdot \mathbf{G}^{-1}\left(\mathbf{A}_{2}\right)}_{\mathbf{A}_{\times}}+x_{1} x_{2} \mathbf{G})+\underbrace{\mathbf{e}_{1}^{\top} \mathbf{G}^{-1}\left(\mathbf{A}_{2}\right)-x_{1} \mathbf{e}_{2}^{\top}}_{\mathbf{e}_{\times}^{\top}} .
\end{aligned}
$$

Homomorphic Evaluation [BGG+14]

"Embed" bits x_{1}, \ldots, x_{k} into matrices $A_{1}, \ldots, A_{k} \in \mathbb{Z}_{q}^{n \times m}$ and compute a circuit $C:\{0,1\}^{k} \rightarrow\{0,1\}$ on these matrices.

Homomorphic Evaluation

We have a pair of algorithms (ComputeA, ComputeC) satisfying the following properties:

- ComputeA $\left(C, A_{1}, \ldots, A_{k}\right) \mapsto A_{C} \in \mathbb{Z}_{q}^{n \times m}$.
- ComputeC $\left(C,\left\{\mathbf{A}_{i}, x_{i}, \mathbf{u}_{i}\right\}_{i \in[k]}\right) \mapsto \mathbf{u}_{C} \in \mathbb{Z}_{q}^{m}$. If $\mathbf{u}_{\mathbf{i}}=\mathbf{s}^{\top}\left(\mathbf{A}_{i}+x_{i} \mathbf{G}\right)+\mathbf{e}_{i}$, then

$$
\mathbf{u}_{C}=\mathbf{s}^{\top}\left(\mathbf{A}_{C}+C(\mathbf{x}) \mathbf{G}\right)+\mathbf{e}_{C},
$$

where $\left\|\mathbf{e}_{c}\right\|_{\infty} \leq(1+m)^{d} \cdot \max _{i \in[k]}\left\|\mathbf{e}_{i}\right\|_{\infty}$.

- What we can do: Embed x into some matrices, and compute something about $C(x)$ when given circuit C.
- Goal: With the constrained key K_{c} for circuit C, we want to evaluate a function on some point x somehow related to $C(x)$.

Universal Circuit

Suppose that our circuits $\mathcal{C}:=\left\{\mathcal{C}:\{0,1\}^{k} \rightarrow\{0,1\}\right\}$ can be described by a string in $\{0,1\}^{2}$. There exists a universal circuit \mathcal{U}_{k} : $\{0,1\}^{2} \times$ $\{0,1\}^{k} \rightarrow\{0,1\}$ such that

$$
\mathcal{U}_{k}(C, x)=C(x), \forall C \in \mathcal{C}, \forall x \in\{0,1\}^{k} .
$$

CPRF: First Attmept

- Gen $\left(1^{\kappa}, 1^{2}\right) \mapsto(p p, K)$: Output

$$
p p:=(\underbrace{A_{0}, A_{1}}_{\text {for input } x}, \underbrace{\boldsymbol{B}_{1}, \ldots, B_{2}}_{\text {for circuit } C}), K:=\mathbf{s} \text {, }
$$

- $\operatorname{Eval}\left(p p, K=\mathbf{s}, \mathbf{x} \in\{0,1\}^{k}\right):$ Compute

$$
\mathrm{B}_{\mathcal{U}, \mathrm{x}}:=\text { ComputeA }\left(\mathcal{U}_{k}, \mathrm{~B}_{1}, \ldots, \mathrm{~B}_{z}, \mathrm{~A}_{x_{1}}, \ldots, \mathrm{~A}_{\mathrm{x}_{k}}\right),
$$

and output $F_{\mathbf{s}}(\mathbf{x})=\left\lfloor s^{\top} \mathbf{B}_{\mathcal{U}, \mathrm{x}}\right\rceil_{p}$.

- Constrain(pp,s,C): Compute for $b \in\{0,1\}, i \in[z]$:
$\mathrm{a}_{b}:=\mathbf{s}^{\top}\left(\mathrm{A}_{b}+b \cdot \mathrm{G}\right)+\mathbf{e}_{1, b}^{\top} \in \mathbb{Z}_{q}^{m}, \quad \mathrm{~b}_{i}:=\mathrm{s}^{\top}\left(\mathrm{B}_{i}+\mathrm{C}_{i} \cdot \mathrm{G}\right)+\mathbf{e}_{2, i}^{\top} \in \mathbb{Z}_{q}^{m}$,
where $\mathrm{e} \leftarrow \chi$. Output $K_{c}:=\left(\mathrm{a}_{0}, \mathrm{a}_{1}, \mathrm{~b}_{1}, \ldots, \mathrm{~b}_{\mathrm{z}}\right)$.
- CEval($\left.p p, K_{c}, \mathbf{x}\right)$: Compute
$\mathrm{b}_{\mathcal{U}, \mathrm{x}}:=\operatorname{ComputeC}\left(\mathcal{U},\left(\mathrm{b}_{1}, \ldots, \mathrm{~b}_{z}, \mathrm{a}_{x_{1}}, \ldots, \mathrm{a}_{x_{k}}\right),\left(C_{1}, \ldots, C_{z}, x_{1}, \ldots, x_{k}\right)\right)$.
Output $\left[\mathrm{b}_{\mathcal{U}, \mathrm{x}}\right\rceil_{\rho}$.

Correctness

$$
\checkmark \mathbf{b}_{\mathcal{U}, \mathrm{x}}=\mathbf{s}^{\top}\left(\mathrm{B}_{\mathcal{U}, \mathrm{x}}+\mathrm{C}(\mathrm{x}) \mathrm{G}\right)+\text { noise. }
$$

But what if $L \cdot \eta_{p}$ errs? This kind of event can be used to solve the following 1D-SIS problem.

Definition 7 (The One-Dimensional Short Integer Solution problem ID-SIS ${ }_{q, m, t}$)

Given a uniformly distributed vector $v \in \mathbb{Z}_{q}^{m}$, find $\mathbf{z} \in \mathbb{Z}^{m}$ such that

$$
\|\mathbf{z}\| \leq t \text { and }\langle\mathbf{v}, \mathbf{z}\rangle \in[-t, t]+q \mathbb{Z} .
$$

Theorem 8 ([GPV07])
Let $n \in \mathbb{N}$ and $q=\prod_{i \in[n]} p_{i}$, where all $p_{1}<p_{2}<\cdots<p_{n}$ are co-prime. Let $m \geq c \cdot n \log q$ (for some universal constant c). Assuming that $p_{1} \geq t \omega(\sqrt{m n l o g n}), 1 D-S I S_{q, m, t}$ is at least as hard as $\operatorname{SIVP}_{t \cdot \tilde{o}(\sqrt{m n})}$ and $\operatorname{GapSVP}_{t \cdot \tilde{o}(\sqrt{m n})}$.

Achieving Pseudorandomess

x Pseudorandom on unauthorized points: if $C(x)=1$, it is indeed hard to compute $F_{s}(x)$, but not pseudorandom.

Solution

Introduce a new independent LWE matrix D in pp and

$$
\operatorname{Eval}(p p, \mathbf{s}, \mathbf{x}) \text { outputs }\left[s^{\top} \mathbf{B}_{\mathcal{U}, \mathbf{x}} \cdot \mathbf{G}^{-1}(\mathrm{D})\right\rceil_{p}
$$

Now we have

$$
\begin{aligned}
\mathrm{S}^{\top} \mathrm{B}_{\mathcal{U}, \mathrm{x}} \cdot \mathrm{G}^{-1}(\mathrm{D}) & \approx \mathrm{s}^{\top}\left(\left(\mathrm{B}_{\mathcal{U}, \mathrm{x}}-\mathrm{C}(\mathrm{x}) \mathrm{G}\right)+\text { noise }\right) \cdot \mathrm{G}^{-1}(\mathrm{D}) \\
& +C(\mathrm{x})\left(\mathrm{s}^{\top} \mathrm{D}+\text { noise }\right) .
\end{aligned}
$$

When $C(x)=1$, the blue part randomizes the expression.
\checkmark Correctness still holds since $\mathrm{G}^{-1}(\mathrm{D})$ has low norm.

Coup de Grace

$$
F_{\mathrm{s}}(\mathrm{x}):=\left\lfloor\mathrm{s}^{\top} \mathrm{B}_{\mathcal{U}, \mathrm{x}} \cdot \mathrm{G}^{-1}(\mathrm{D})\right\rceil_{p} .
$$

\boldsymbol{x} Only for single query, since the randomness from D can only use once.
Solution
Use admissible hash to deal with the challenge query \mathbf{x}^{*} differently.
Now this is exactly the construction in [BV15]!

1-Key Privacy (or Constraint-Hinding)

The Game CH

The game CH between challenger \mathbb{C} and adversary \mathbb{A} has three stages:

- Setup. \mathbb{C} runs $p p \leftarrow \operatorname{Setup}\left(1^{\kappa}\right), K \leftarrow \operatorname{Gen}(p p)$, and set $S_{\text {eval }}=$ $S_{\text {con }}=\emptyset . \mathbb{C}$ sends pp to \mathbb{A}.
- Constraind Key Query.
- A send two circuits $C_{0}, C_{1} \in \mathcal{C}$ to \mathbb{C}
- \mathbb{C} toss a coin $b \stackrel{\$}{\leftarrow}\{0,1\}$ and sends $K_{b} \leftarrow \operatorname{Constrain}\left(K, C_{b}\right)$ to A.
- Guess. A guesses $b^{\prime} \in\{0,1\}$.

A wins iff $b^{\prime}=b$.

Definition 9

A CPRF Π is said to satisfy 1 -key privacy if for all PPT adversary \mathbb{A}, it holds that $\left.\left\lvert\, \operatorname{Pr}[$ Awins $]-\frac{1}{2}\right. \right\rvert\,=\operatorname{negl}(\kappa)$.

State of Art

Table 2: List of existing constructions of CPRFs along with their functionality and the assumptions required.

	Adaptive	Collusion-resistance	Privacy	Predicate	Assumption
[BW13]	\times	poly	0^{\dagger}	Prefix ${ }^{\ddagger}$	OWF
	\checkmark	poly	poly	LR	BDDH \& ROM
	\times	poly	0	BF	MLDDH
	\times	poly	0	P/poly	MLDDH
[KPTZ13]	\times	poly	0^{\dagger}	Prefix ${ }^{\ddagger}$	OWF
[BGI14]	\times	poly	0^{\dagger}	Prefix ${ }^{\ddagger}$	OWF
[BZ14]	\times	poly	0	P/poly	IO
[HKKW19]	\checkmark	poly	0	P/poly	IO \& ROM
[$\left.\mathrm{BFP}^{+} 15\right]$	\times	poly	0	Prefix	LWE
[BV15]	\times	1	0	P/poly	LWE
[HKW15]	\checkmark	poly	0	Puncturing	SGH \& IO
[BLW17]	\times	poly	1 (weak)	Puncturing	MLDDH
	\times	poly	1 (weak)	BF	MLDDH
	\times	poly	poly	$\mathrm{P} /$ poly	IO
[BTVW17]	\times	1	1	P/poly	LWE
[CC17]	\times	1	1	BF	LWE
	\times	1	1	NC^{1}	LWE
$\left[\mathrm{AMN}^{+} 18\right]$	\times	1	1	BF	DDH
	\times	1	0	NC ${ }^{1}$	L-DDHI
	\checkmark	1	1	BF	ROM
	\checkmark	1	0	NC^{1}	L-DDHI \& ROM
[CVW18]	\times	1	1	NC^{1}	LWE
[PS18]	\times	1	1	P/poly	LWE
[AMN ${ }^{+19]}$	\checkmark	1	0	NC ${ }^{1}$	SGH \& IO
Section 4	\checkmark	$O(1)$	1 (weak)	t - $\mathrm{CNF}(\supseteq \mathrm{BF})$	OWF
Section 5	\checkmark	1	1 (weak)	IP	LWE
Section 6	\checkmark	$O(1)$	0	P/poly	LWE \& IO

Figure 2: Taken from $\left[\mathrm{DKN}^{+} 20\right]$

Discussion

- Can we support the following functionality? AddConstraint $\left(p p, K_{C}, C^{\prime}\right) \mapsto K_{c \wedge C^{\prime}}$.
- Support more collusion.
- Achieving adaptive security.
- CPRF from other assumptions?

References i

图 D. Boneh, Craig Gentry, S. Gorbunov, S. Halevi, V. Nikolaenko, G. Segev, V. Vaikuntanathan, and Dhinakaran Vinayagamurthy, Fully key-homomorphic encryption, arithmetic circuit abe and compact garbled circuits, EUROCRYPT, 2014.
(e. Boneh, Kevin Lewi, H. Montgomery, and A. Raghunathan, Key homomorphic prfs and their applications, CRYPTO, 2013.
Abhishek Banerjee and Chris Peikert, New and improved key-homomorphic pseudorandom functions, Annual Cryptology Conference, Springer, 2014, pp. 353-370.
Abhishek Banerjee, Chris Peikert, and Alon Rosen, Pseudorandom functions and lattices, Annual International Conference on the Theory and Applications of Cryptographic Techniques, Springer, 2012, pp. 719-737.

References ii

圊 Zvika Brakerski and V. Vaikuntanathan, Constrained key-homomorphic prfs from standard lattice assumptions - or: How to secretly embed a circuit in your prf, TCC, 2015.
R Alex Davidson, Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa, Adaptively secure constrained pseudorandom functions in the standard model, CRYPTO, 2020.
Craig Gentry, Chris Peikert, and V. Vaikuntanathan, Trapdoors for hard lattices and new cryptographic constructions, Proceedings of the fortieth annual ACM symposium on Theory of computing (2007).

