Lattice-based PRFs and Constrained PRFs

Xinyu Mao November 13, 2021

Shanghai Jiao Tong Uninversity

Lattice-based PRF The Construction in [BPR12] Key-Homomorphic PRFs

Constrained PRF

Definitions

Key-Homomorphic Evaluation

Construction in [BV15]

Lattice-based PRF The Construction in [BPR12] Key-Homomorphic PRFs

Constrained PRF

Definition of Pseudorandom Functions (PRFs)

Definition 1 (Keyed function)

Let κ be a security parameter. A *keyed function* with domain $\mathcal{D} := \{\mathcal{D}_{\kappa}\}_{\kappa \in \mathbb{N}}$ and range $\mathcal{R} := \{\mathcal{R}_{\kappa}\}_{\kappa \in \mathbb{N}}$ is a pair of PPT algorithms (Gen, Eval) where

- Gen $(1^{\kappa}) \mapsto K \in \{0,1\}^{\kappa}$.
- Eval $(K, x) \mapsto y \in \mathcal{R}_{\kappa}$: The evaluation algorithm takes as input $x \in \mathcal{D}_{\kappa}$ and outputs $y \in \mathcal{R}_{\kappa}$.

Definition 2 (PRF)

A keyed function $\Pi := (Gen, Eval)$ is a *PRF* if for every PPT adversary A, the following quantity is negligible:

$$\Pr_{\mathsf{K}\leftarrow\mathsf{Gen}(1^{\kappa})}\left[\mathcal{A}^{\mathsf{Eval}(\mathsf{K},\cdot)}(1^{\kappa})=1\right]-\Pr_{f\overset{\mathsf{S}}{\leftarrow}\mathcal{F}}\left[\mathcal{A}^{f(\cdot)}(1^{\kappa})=1\right],$$

where \mathcal{F} is the set of all functions from \mathcal{D}_{κ} to \mathcal{R}_{κ} .

The Construction in [BPR12]

Construction 1

• Public parameters: moduli q > p.

•
$$\mathcal{D} := \{0,1\}^{\ell}, \mathcal{R} := \mathbb{Z}_p^n$$
.

- Gen $(1^{\kappa}) \mapsto K$: Sample $\mathbf{a} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^n$ and $\mathbf{S}_i \leftarrow \chi^{n \times n}$ for each $i \in \ell$. Output $K := (\mathbf{a}, {\{\mathbf{S}_i\}}_{i \in [\ell]})$.
- Eval(K, x) \mapsto y : Parse K := $(a, \{S_i\}_{i \in [\ell]})$ and output

$$F_{\mathbf{a},\mathbf{S}_1,\ldots,\mathbf{S}_\ell}(\mathbf{X}) := \left[\mathbf{a}^\top \cdot \prod_{i=1}^\ell \mathbf{S}_i^{\mathbf{X}_i}\right]_p \in \mathbb{Z}_p^n.$$

Proof Outline

• Replace $F_{a,S_1,...,S_\ell}(x)$ with

$$\widetilde{F}_{\mathbf{a},\mathbf{S}_{1},\ldots,\mathbf{S}_{\ell}}(\mathbf{x}) := \left[\left(\mathbf{a}^{\top} \mathbf{S}_{1}^{\mathbf{x}_{1}} + \mathbf{x}_{1} \cdot \mathbf{e}_{\mathbf{x}_{1}}^{\top} \right) \cdot \prod_{i=2}^{\ell} \mathbf{S}_{i}^{\mathbf{x}_{i}} \right]_{p}$$
$$= \left[\mathbf{a}^{\top} \prod_{i=1}^{\ell} \mathbf{S}_{1}^{\mathbf{x}_{i}} + \mathbf{x}_{1} \cdot \mathbf{e}_{\mathbf{x}_{1}}^{\top} \cdot \prod_{i=2}^{\ell} \mathbf{S}_{i}^{\mathbf{x}_{i}} \right]_{p}$$

- Since the error term is small, after rounding, $\tilde{F}(x) = F(x)$ on all queries w.h.p..
- Replace $(a, a^\top S_1 + e_{x_1}^\top)$ with uniform $(u_0, u_1).$ That is, we now output

$$F'_{\mathbf{a},\mathbf{S}_1,\ldots,\mathbf{S}_\ell}(x) := \left\lfloor \mathbf{u}_{x_1} \cdot \prod_{i=2}^{\ell} \mathbf{S}_i^{x_i} \right\rfloor_p$$

Repeat for S₂,..., S_ℓ, we get F''''(x) = [u_x]_p, which is a uniformly random function.

٠

Key-Homomorphic Construction [BLMR13]

Construction 2

• Public parameters: $B_0, B_1 \stackrel{\$}{\leftarrow} \{0, 1\}^{m \times m}$ and moduli q > p.

•
$$\mathcal{D} := \{0,1\}^{\ell}, \mathcal{R} := \mathbb{Z}_p^m$$
.

- Gen $(1^{\kappa}) \mapsto K \in \mathbb{Z}_q^m$: Sample $\mathbf{s} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^m$ and output $K := \mathbf{s}$.
- Eval(s, $x \in \{0, 1\}^{\ell}$): Output

$$F_{\mathbf{s}}(\mathbf{x}) := \left[\mathbf{s}^{\top} \prod_{i=1}^{\ell} \mathbf{B}_{\mathbf{x}_i}\right]_{p} \in \mathbb{Z}_p^m.$$

• Almost key-homomorphic:

$$F_{s_1+s_2}(x) = F_{s_1}(x) + F_{s_2}(x) + \{-1, 0, 1\}^m$$

• The proof strategy is similar to [BPR12]: introduce short errors that vanishes after rounding.

Proof Outline [BLMR13]

$$F_{\mathbf{s}}(\mathbf{x}) := \left[\mathbf{s}^{\top} \prod_{i=1}^{\ell} \mathbf{B}_{\mathbf{x}_{i}}\right]_{p} \approx_{\mathbf{s}} \left[(\mathbf{s}^{\top} \mathbf{B}_{\mathbf{x}_{1}} + \mathbf{e}_{\mathbf{x}_{1}}) \cdot \prod_{i=2}^{\ell} \mathbf{B}_{\mathbf{x}_{i}} \right]_{p}$$
$$\approx_{c} \left[\mathbf{u}_{\mathbf{x}_{1}} \cdot \prod_{i=2}^{\ell} \mathbf{B}_{\mathbf{x}_{i}} \right]_{p} \approx_{c} \cdots \approx_{c} \left[\mathbf{u}_{\mathbf{x}} \right]_{p} = U(\mathbf{x}).$$

- Note that the public matrix B₀, B₁ is sampled from {0,1}^{m×m} (not Z^{n×n}_q). This guarantees the error we introduced will not be amplified when multiplied by B_i.
- By setting *m* ≈ *n* log *q*, this can be reduced to the standard LWE with dimension *n*.
- **X** LWE approx factor α grows exponentially in input length ℓ .

Recall that the *gadget matrix* is defined as

$$\mathbf{G} := \mathbf{I}_n \otimes \mathbf{g} \in \mathbb{Z}_q^{n \times n\ell},$$

where $\ell = \lceil \log q \rceil$ and $\mathbf{g} := (1, 2, 4, \dots, 2^{\ell-1}) \in \mathbb{Z}_q^{\ell}$.

- If $\mathbf{x} \in \{0,1\}^{\ell}$ is the binary decomposition of $u \in \mathbb{Z}_q$, we have $\langle \mathbf{g}, \mathbf{x} \rangle = u$.
- View $\mathbf{x} \in \{0, 1\}^{n\ell}$ as *n* blocks: $\mathbf{x} = (\mathbf{x}_{\{1\}}, \dots, \mathbf{x}_{\{n\}})$, where each block has length ℓ , i.e., $\mathbf{x}_{\{i\}} \in \{0, 1\}^{\ell}$. Then $\mathbf{G}\mathbf{x} = \mathbf{u} \in \mathbb{Z}_q^n$ simply says: $\mathbf{x}_{\{i\}}$ is the binary decomposition of \mathbf{u}_i .
- G^{-1} is the "decomposition" function defined as:

$$\mathbf{G}^{-1}: \mathbb{Z}_q^n \to \mathbb{Z}^{n\ell}$$

 $\mathbf{u} \mapsto \mathbf{a} \text{ short } \mathbf{x} \text{ such that } \mathbf{G}\mathbf{x} = \mathbf{u}.$

[BP14]: A Tree Enjoys Better Parameter :)

Construction 3

- Public parameters: $A_0, A_1 \in \mathbb{Z}_q^{n \times n\ell}$, a binary tree T, and a moduli $q \geq p.$
- $\mathcal{D} := \{0,1\}^{|T|}, \mathcal{R} := \mathbb{Z}_p^{n\ell}$, where |T| := number of leaves in T.
- $\operatorname{Gen}(1^{\kappa}) \to K \in \mathbb{Z}_q^n : Sample \mathbf{s} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^n \text{ and output } \mathbf{s}.$
- $Eval(s, x) \rightarrow y : Output$

$$\lfloor \mathbf{s}^{\top} \cdot \mathbf{A}_T(x) \rceil \in \mathbb{Z}_p^{n\ell}.$$

 $\mathbf{A}_{T}: \{0,1\}^{|T|} \to \mathbb{Z}_{q}^{n \times n\ell}$ is defined recursively as

$$\mathbf{A}_{T}(a) := \begin{cases} \mathbf{A}_{x} & \text{if } |T| = 1, \\ \mathbf{A}_{T.l}(x.l) \cdot \mathbf{G}^{-1}(\mathbf{A}_{T.r}(x.r)), & \text{otherwise}, \end{cases}$$

where we parse $x := x.l ||x.r \text{ for } x.l \in \{0,1\}^{|T.l|}, x.r \in \{0,1\}^{|T.r|}$.

 $F_{s}(x) := \lfloor s^{\top} \cdot A_{T}(x) \rceil \in \mathbb{Z}_{p}^{n\ell}$ where

$$\mathsf{A}_{\mathsf{T}}(a) := \begin{cases} \mathsf{A}_{\mathsf{X}} & \text{if } |\mathsf{T}| = 1, \\ \mathsf{A}_{\mathsf{T}.l}(\mathsf{X}.l) \cdot \mathsf{G}^{-1}(\mathsf{A}_{\mathsf{T}.r}(\mathsf{X}.r)), & \text{otherwise.} \end{cases}$$

- Sequentiality *s*(*T*) (the "right depth" of *T*): Circuit depth of PRF is proportional to *s*(*T*).
- Expansion *e*(*T*) (the "left depth" of *T*): LWE approx factor is exponential in *e*(*T*).
- Max input length = max number of leaves = $\binom{e+s}{e}$.

Proof Idea

Consider the leftmost path:

$$\begin{split} F_{\mathbf{s}}(\mathbf{X}) &= \left\lfloor \mathbf{s}^{\top} \mathbf{A}_{\mathbf{x}_{0}} \cdot \mathbf{G}^{-1} (\mathbf{A}_{T_{1}}(\overrightarrow{\mathbf{x}_{1}})) \cdots \right\rfloor_{p} \\ &\approx_{s} \left\lfloor (\mathbf{s}^{\top} \mathbf{A}_{\mathbf{x}_{0}} + \mathbf{e}_{\mathbf{x}_{0}}) \cdot \mathbf{G}^{-1} (\mathbf{A}_{T_{1}}(\overrightarrow{\mathbf{x}_{1}})) \cdots \right\rfloor_{p} \\ &\approx_{c} \left\lfloor \mathbf{u}_{\mathbf{x}_{0}}^{\top} \cdot \mathbf{G}^{-1} (\mathbf{A}_{T_{1}}(\overrightarrow{\mathbf{x}_{1}})) \cdots \right\rfloor_{p} . (*) \end{split}$$

- Problem: $\{A_{T_1}(\overrightarrow{x_1})\}_{\overrightarrow{x_1} \in \{0,1\}^w}$ is not independent unless $w := |\overrightarrow{x_1}| = 1.$
- A wishful thinking: if $\mathbf{u}_{x_0}^{\top} = \mathbf{t}_{x_0}^{\top} \mathbf{G}$, then $(*) = \left\lfloor \mathbf{t}_{x_0}^{\top} \cdot \mathbf{A}_{T_1}(\overrightarrow{x_1}) \cdots \right\rceil_p$.
- However, a uniformly random *u* is highly likely to be very far from any vector of the form t[⊤]G.

Proof Idea

Solution: Write $u^{\top} = t^{\top}G + v^{\top},$ where $v \in \mathcal{P}(G)$ and t are uniform and independent.

 $F_{s}(x)$ is indistinguishable from

$$F'_{\mathsf{u}_0,\mathsf{u}_1,\mathsf{v}_0,\mathsf{v}_1}(x) = \left\lfloor \mathsf{t}_{\mathsf{x}_0}^\top \cdot \mathsf{A}_{\mathsf{T}'}(\mathsf{x}_2 \| \cdots \| \mathsf{x}_\ell) + \mathsf{v}_{\mathsf{x}_0}^\top \cdot \mathsf{G}^{-1}(\mathsf{A}_{\mathsf{T}_1}(\overrightarrow{\mathsf{x}_1})) \cdots \right\rfloor_p,$$

Figure 1: T' is the tree obtained from T by removing its leftmost leaf z and promoting z's sibling subtree T_1 to replace their parent.

Summary

The common idea in [BLMR13] and [BP14]

- Generate some matrices $\{A_i \in \mathbb{Z}_q^{n \times m}\}_{i \in [k]}$ as public parameters.
- The key of the PRF is a vector $\mathbf{s} \in \mathbb{Z}_q^n$.
- To evaluate on the point $\mathbf{x} \in \{0, 1\}^{\ell}$, one first compute a matrix $\mathbf{A}_{\mathbf{x}} \in \mathbb{Z}_{q}^{n \times m}$ publicly, and output $F_{\mathbf{s}}(\mathbf{x}) := \lfloor \mathbf{s}^{\top} \mathbf{A}_{\mathbf{x}} \rfloor_{n}$.

[BLMR13] can be view as a special case of [BP14] in the following sense:

• The [BLMR13] construction works as long as the public matrices B_0, B_1 is somewhat "short". Hence, we may generate B_0, B_1 as follows:

for
$$i = 1, 2$$
: $\mathbf{B}_i := \mathbf{G}^{-1}(\mathbf{A}_i)$, where $\mathbf{A}_i \stackrel{\$}{\leftarrow} \mathbb{Z}_q^{n \times m}$.

• This coincides with [BP14] construction by letting *T* be a spline-shaped tree, i.e., *s*(*T*) = 1.

Lattice-based PRF

Constrained PRF

Definitions

Key-Homomorphic Evaluation

Construction in [BV15]

Syntax of Constrained PRF

- Let $\mathcal{R} = \{\mathcal{R}_{\kappa}\}_{\kappa \in \mathbb{N}}$ and $\mathcal{D} = \{\mathcal{D}_{\kappa}\}_{\kappa \in \mathbb{N}}$ be families of sets representing the range and domain of the PRF respectively.
- Let $C = \{C_{\kappa}\}_{\kappa \in \mathbb{N}}$ be a family of circuits, where C_{κ} is a set of circuits with domain \mathcal{D}_{κ} and range $\{0, 1\}$.

Definition 3 (Syntax of CPRF)

A constrained pseudorandom function for C is defined by the five PPT algorithms $\Pi :=$ (Setup, Gen, Eval, Constrain, CEval) where:

- Setup $(1^{\kappa}) \mapsto pp$.
- $Gen(pp) \mapsto K : K$ is referred to as *master key*.
- Eval $(pp, K, x \in D) \mapsto y \in \mathcal{R}$.
- Constrain($K, C \in C$) $\mapsto K_C : K_C$ is referred to as *constrained key*.
- CEval $(pp, K_C, x) \mapsto y$: CEval takes as input a public parameter pp, a constrained key K_C , and an input $x \in D$ and outputs $y \in \mathcal{R}$.

Pseudorandom on Constrained Points

The Game **PRoCP**

The game PRoCP between challenger \mathbbm{C} and adversary \mathbbm{A} has five stages:

- Setup. \mathbb{C} runs $pp \leftarrow \text{Setup}(1^{\kappa}), K \leftarrow \text{Gen}(pp), \text{ and set } S_{eval} = S_{con} = \emptyset$. \mathbb{C} sends pp to \mathbb{A} .
- Query. A can *adaptively* make the two types of queries:
 - **Evaluation Query.** A queries $x \in D$, and \mathbb{C} returns $y \leftarrow$ Eval(pp, K, x). \mathbb{C} updates $S_{eval} := S_{eval} \cup \{x\}$.
 - **Constrained Key Query.** A queries $C \in C$, and \mathbb{C} returns $K_C \leftarrow$ Constrain(K, C). \mathbb{C} updates $S_{con} := S_{con} \cup \{C\}$.
- Challenge. A chooses $x^* \in \mathcal{D}$ s.t. $x^* \notin S_{eval}$ and $C(x^*) = 0$ for all $C \in S_{con}$. \mathbb{C} toss a coin $b \stackrel{\$}{\leftarrow} \{0, 1\}$; if b = 0, let $y^* \stackrel{\$}{\leftarrow} \mathcal{R}$, otherwise, $y_* \leftarrow \text{Eval}(\text{pp}, K, x^*)$. ; \mathbb{C} returns y_* to \mathbb{A} .
- Query. Any query except for those $C \in C$ with $C(x^*) = 0$.
- **Guess.** A guess $b' \in \{0, 1\}$.

We say A wins iff b = b'.

Definition 4

A CPRF Π is said to be (adaptively) pseudorandom on constrained points if for all PPT adversary A, it holds that $|\Pr[Awins] - \frac{1}{2}| = \operatorname{negl}(\kappa).$

The CPRF is *selectively pseudorandom* if the constraint queries must be query at the begin of the stage 2.

Definition 5 (Collusion Resistance)

In the game **PRoCP**, if we can tolerate up to *Q* constrained key queries, we say the CPRF is *Q*-collusion resistance.

Definition 6

A *trapdoor* for a parity-check matrix $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ is any sufficiently "short" integer matrix $\mathbf{R} \in \mathbb{Z}_q^{m \times n\ell}$ such that

$\mathsf{AR}=\mathsf{HG},$

for some invertible $\mathbf{H} \in \mathbb{Z}_q^{n \times n}$, called the *tag* of the trapdoor.

Trapdoor Generation

Sample $\bar{\mathbf{A}} \leftarrow \mathbb{Z}_q^{n \times \bar{m}}$, a short $\bar{\mathbf{R}} \in \mathbb{Z}_q^{\bar{m} \times n\ell}$, and an invertible matrix $\mathbf{H} \in \mathbb{Z}_q^{n \times n}$. Set $\mathbf{A} := [\bar{\mathbf{A}} \mid \mathbf{H}\mathbf{G} - \bar{\mathbf{A}}\bar{\mathbf{R}}]$. Then $\mathbf{R} := [\bar{\mathbf{R}}]$ is a trapdoor for A with tag \mathbf{H} .

Let $\mathbf{\bar{A}} \in \mathbb{Z}_q^{n imes \bar{m}}$ and define

$$\mathbf{A}_i := \bar{\mathbf{A}}\mathbf{R}_i - x_i\mathbf{G}, i = 1, 2.$$

That is, $\begin{bmatrix} \mathbf{R}_i \\ \mathbf{I} \end{bmatrix}$ is a trapdoor of $\begin{bmatrix} \overline{\mathbf{A}} & | & \mathbf{A}_i \end{bmatrix}$ with tag $x_i \mathbf{I}$. It holds that

$$A_+ := A_1 + A_2 = \bar{A}(\underbrace{R_1 + R_2}_{:=R_+}) - (x_1 + x_2)G,$$

and

$$\begin{aligned} A_{\times} &:= -A_1 \cdot G^{-1}(A_2) = -(\bar{A}R_1 - x_1G) \cdot G^{-1}(A_2) \\ &= -\bar{A} \cdot R_1G^{-1}(A_2) + x_1A_2 \\ &= \bar{A}(\underbrace{x_1R_2 - R_1G^{-1}(A_2)}_{&:=R_{\times}}) - x_1x_2G \end{aligned}$$

In the latter case, we need x₁ to be a *small* integer in order to get a good-quality trapdoor.

Homomorphic Evaluation of LWE Ciphertexts

Let $\mathbf{s} \in \mathbb{Z}_q^n$ and for i = 1, 2, let

$$\mathbf{u}_i^\top := \mathbf{s}^\top (\mathbf{A}_i + x_i \mathbf{G}) + \mathbf{e}_i^\top,$$

where $\mathbf{e}_i \leftarrow \chi^m$. Then

$$\mathbf{u}_{+}^{\top} := \mathbf{u}_{1}^{\top} + \mathbf{u}_{2}^{\top} = \mathbf{s}^{\top}((\underbrace{\mathbf{A}_{1} + \mathbf{A}_{2}}_{\mathbf{A}_{+}}) + (x_{1} + x_{2})\mathbf{G}) + \underbrace{\mathbf{e}_{1}^{\top} + \mathbf{e}_{2}^{\top}}_{\mathbf{e}_{+}^{\top}},$$

and

$$u_{\times}^{\top} := x_{1}u_{2}^{\top} - u_{1}^{\top}G^{-1}(A_{2})$$

= $x_{1} (s^{\top}(A_{2} + x_{2}G) + e_{2}) - (s^{\top}(A_{1} + x_{1}G) + e_{1})G^{-1}(A_{2})$
= $s^{\top}(\underbrace{-A_{1} \cdot G^{-1}(A_{2})}_{A_{\times}} + x_{1}x_{2}G) + \underbrace{e_{1}^{\top}G^{-1}(A_{2}) - x_{1}e_{2}^{\top}}_{e_{\times}^{\top}}.$

"Embed" bits x_1, \ldots, x_k into matrices $A_1, \ldots, A_k \in \mathbb{Z}_q^{n \times m}$ and compute a circuit $C : \{0, 1\}^k \to \{0, 1\}$ on these matrices.

Homomorphic Evaluation

We have a pair of algorithms (ComputeA, ComputeC) satisfying the following properties:

- ComputeA($C, \mathbf{A}_1, \dots, \mathbf{A}_k$) $\mapsto \mathbf{A}_C \in \mathbb{Z}_q^{n \times m}$.
- ComputeC(C, $\{A_i, x_i, u_i\}_{i \in [k]}$) $\mapsto u_C \in \mathbb{Z}_q^m$. If $u_i = s^{\top}(A_i + x_iG) + e_i$, then

$$u_{C} = s^{\top}(A_{C} + C(x)G) + e_{C},$$

where $\|\mathbf{e}_{C}\|_{\infty} \leq (1+m)^{d} \cdot \max_{i \in [k]} \|\mathbf{e}_{i}\|_{\infty}$.

- What we can do: Embed x into some matrices, and compute something about C(x) when given circuit C.
- Goal: With the constrained key K_C for circuit C, we want to evaluate a function on some point x somehow related to C(x).

Universal Circuit

Suppose that our circuits $C := \{C : \{0,1\}^k \to \{0,1\}\}$ can be described by a string in $\{0,1\}^z$. There exists a *universal circuit* $\mathcal{U}_k : \{0,1\}^z \times \{0,1\}^k \to \{0,1\}$ such that

 $\mathcal{U}_k(\mathcal{C}, \mathbf{x}) = \mathcal{C}(\mathbf{x}), \forall \mathcal{C} \in \mathcal{C}, \forall \mathbf{x} \in \{0, 1\}^k.$

CPRF: First Attmept

• $Gen(1^{\kappa}, 1^{z}) \mapsto (pp, K)$: Output

$$pp := (\underbrace{A_0, A_1}_{\text{for input x}}, \underbrace{B_1, \dots, B_z}_{\text{for circuit C}}), K := \mathbf{s},$$

where $A_0, A_1, B_1, \dots, B_z \xleftarrow{\$} \mathbb{Z}_q^{n \times m}$ and $s \xleftarrow{\$} \mathbb{Z}_q^n$.

Eval(pp, K = s, x ∈ {0,1}^k) : Compute

 $\mathbf{B}_{\mathcal{U},x} := \text{ComputeA}\left(\mathcal{U}_k, \mathbf{B}_1, \dots, \mathbf{B}_Z, \mathbf{A}_{x_1}, \dots, \mathbf{A}_{x_k}\right),$

and output $F_{\mathbf{s}}(\mathbf{x}) = \lfloor \mathbf{s}^{\top} \mathbf{B}_{\mathcal{U}, \mathbf{x}} \rfloor_{p}$.

• Constrain(pp, \mathbf{s} , C): Compute for $b \in \{0, 1\}$, $i \in [z]$:

 $\mathbf{a}_b := \mathbf{s}^\top (\mathbf{A}_b + b \cdot \mathbf{G}) + \mathbf{e}_{1,b}^\top \in \mathbb{Z}_q^m, \quad \mathbf{b}_i := \mathbf{s}^\top (\mathbf{B}_i + C_i \cdot \mathbf{G}) + \mathbf{e}_{2,i}^\top \in \mathbb{Z}_q^m,$

where $\mathbf{e} \leftarrow \chi$. Output $K_C := (\mathbf{a}_0, \mathbf{a}_1, \mathbf{b}_1, \dots, \mathbf{b}_Z)$.

• CEval(*pp*, *K*_C, **x**): Compute

$$\begin{split} \mathbf{b}_{\mathcal{U},\mathbf{x}} &:= \text{ComputeC}\left(\mathcal{U}, \left(\mathbf{b}_1, \dots, \mathbf{b}_z, \mathbf{a}_{x_1}, \dots, \mathbf{a}_{x_k}\right), \left(C_1, \dots, C_z, x_1, \dots, x_k\right)\right). \\ \text{Output} \ \lfloor \mathbf{b}_{\mathcal{U},\mathbf{x}} \rceil_{\rho}. \end{split}$$

Correctness

✓
$$\mathbf{b}_{\mathcal{U},x} = \mathbf{s}^{\top} (\mathbf{B}_{\mathcal{U},x} + C(\mathbf{x})\mathbf{G}) + \text{noise.}$$

But what if $\lfloor \cdot \rceil_p$ errs? This kind of event can be used to solve the following 1D-SIS problem.

Definition 7 (The One-Dimensional Short Integer Solution problem $ID-SIS_{q,m,t}$)

Given a uniformly distributed vector $v \in \mathbb{Z}_q^m$, find $z \in \mathbb{Z}^m$ such that

$$\|\mathbf{z}\| \leq t \text{ and } \langle \mathbf{v}, \mathbf{z} \rangle \in [-t, t] + q\mathbb{Z}.$$

Theorem 8 ([GPV07])

Let $n \in \mathbb{N}$ and $q = \prod_{i \in [n]} p_i$, where all $p_1 < p_2 < \cdots < p_n$ are co-prime. Let $m \ge c \cdot n \log q$ (for some universal constant c). Assuming that $p_1 \ge t\omega(\sqrt{mn \log n})$, 1D-SIS_{q,m,t} is at least as hard as SIVP_{t.Õ(\sqrt{mn})} and GapSVP_{t.Õ(\sqrt{mn})}. Pseudorandom on unauthorized points: if C(x) = 1, it is indeed hard to compute F_s(x), but not pseudorandom.

Solution

Introduce a new independent LWE matrix **D** in *pp* and

Eval(
$$pp$$
, \mathbf{s} , \mathbf{x}) outputs $[\mathbf{s}^{\top} \mathbf{B}_{\mathcal{U},\mathbf{x}} \cdot \mathbf{G}^{-1}(\mathbf{D})]_{p}$.

Now we have

$$\begin{split} s^{\top} B_{\mathcal{U},x} \cdot G^{-1}(D) &\approx s^{\top} \left((B_{\mathcal{U},x} - C(x)G) + \text{noise} \right) \cdot G^{-1}(D) \\ &+ C(x) \left(s^{\top} D + \text{noise} \right). \end{split}$$

- ✓ When $C(\mathbf{x}) = 1$, the blue part randomizes the expression.
- ✓ Correctness still holds since $G^{-1}(D)$ has low norm.

$$F_{s}(\mathbf{x}) := \left\lfloor \mathbf{s}^{\top} \mathbf{B}_{\mathcal{U},\mathbf{x}} \cdot \mathbf{G}^{-1}(\mathbf{D}) \right\rfloor_{p}.$$

X Only for single query, since the randomness from D can only use once.

Solution

Use *admissible hash* to deal with the challenge query \mathbf{x}^* differently.

Now this is exactly the construction in [BV15]!

1-Key Privacy (or Constraint-Hinding)

The Game **CH**

The game CH between challenger \mathbbm{C} and adversary A has three stages:

- Setup. \mathbb{C} runs $pp \leftarrow \text{Setup}(1^{\kappa})$, $K \leftarrow \text{Gen}(pp)$, and set $S_{eval} = S_{con} = \emptyset$. \mathbb{C} sends pp to \mathbb{A} .
- Constraind Key Query.
 - A send two circuits ${\it C}_0, {\it C}_1 \in {\cal C}$ to ${\rm \mathbb{C}}$
 - \mathbb{C} toss a coin $b \leftarrow \{0, 1\}$ and sends $K_b \leftarrow \text{Constrain}(K, C_b)$ to A.
- Guess. A guesses $b' \in \{0, 1\}$.

A wins iff b' = b.

Definition 9

A CPRF Π is said to satisfy 1-key privacy if for all PPT adversary Λ , it holds that $|\Pr[\Lambda wins] - \frac{1}{2}| = \operatorname{negl}(\kappa)$.

State of Art

	Adaptive	Collusion-resistance	Privacy	Predicate	Assumption
[BW13]	×	poly	0†	Prefix [‡]	OWF
	1	poly	poly	LR	BDDH & ROM
	×	poly	0	BF	MLDDH
	×	poly	0	P/poly	MLDDH
[KPTZ13]	×	poly	0^{\dagger}	Prefix [‡]	OWF
[BGI14]	×	poly	0†	Prefix [‡]	OWF
[BZ14]	×	poly	0	P/poly	IO
[HKKW19]	√	poly	0	P/poly	IO & ROM
[BFP+15]	×	poly	0	Prefix	LWE
[BV15]	×	1	0	P/poly	LWE
[HKW15]	√	poly	0	Puncturing	SGH & IO
[BLW17]	×	poly	1 (weak)	Puncturing	MLDDH
	×	poly	1 (weak)	BF	MLDDH
	×	poly	poly	P/poly	IO
[BTVW17]	×	1	1	P/poly	LWE
[CC17]	×	1	1	BF	LWE
	×	1	1	NC1	LWE
[AMN ⁺ 18]	×	1	1	BF	DDH
	×	1	0	NC^1	L-DDHI
	1	1	1	BF	ROM
	1	1	0	NC1	L-DDHI & ROM
[CVW18]	×	1	1	NC ¹	LWE
[PS18]	×	1	1	P/poly	LWE
[AMN+19]	√	1	0	NC ¹	SGH & IO
Section 4	√	O(1)	1 (weak)	t -CNF (\supseteq BF)	OWF
Section 5	1	1	1 (weak)	IP	LWE
Section 6	1	O(1)	0	P/poly	LWE & IO

Table 2: List of existing constructions of CPRFs along with their functionality and the assumptions required.

Figure 2: Taken from [DKN⁺20]

- Can we support the following functionality? AddConstraint $(pp, K_C, C') \mapsto K_{C \wedge C'}$.
- Support more collusion.
- Achieving adaptive security.
- CPRF from other assumptions?

References i

- D. Boneh, Craig Gentry, S. Gorbunov, S. Halevi, V. Nikolaenko,
 G. Segev, V. Vaikuntanathan, and Dhinakaran Vinayagamurthy,
 Fully key-homomorphic encryption, arithmetic circuit abe and compact garbled circuits, EUROCRYPT, 2014.
- D. Boneh, Kevin Lewi, H. Montgomery, and A. Raghunathan, *Key homomorphic prfs and their applications*, CRYPTO, 2013.
- Abhishek Banerjee and Chris Peikert, *New and improved key-homomorphic pseudorandom functions*, Annual Cryptology Conference, Springer, 2014, pp. 353–370.
- Abhishek Banerjee, Chris Peikert, and Alon Rosen, *Pseudorandom functions and lattices*, Annual International Conference on the Theory and Applications of Cryptographic Techniques, Springer, 2012, pp. 719–737.

References ii

- Zvika Brakerski and V. Vaikuntanathan, Constrained key-homomorphic prfs from standard lattice assumptions - or: How to secretly embed a circuit in your prf, TCC, 2015.
- Alex Davidson, Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa, *Adaptively secure constrained pseudorandom functions in the standard model*, CRYPTO, 2020.
- Craig Gentry, Chris Peikert, and V. Vaikuntanathan, *Trapdoors for hard lattices and new cryptographic constructions*, Proceedings of the fortieth annual ACM symposium on Theory of computing (2007).