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Round Communication Trade-Off and
Pointer Chasing



Round communication trade-off

Do more rounds of interaction allow
two parties to solve problems with less communication?

Example. Parity and constant-depth circuits

1
Theorem. Any circuit of depth d that computes ,, must be of size () (Z"d_l).

Karchmer-Wigderson game K/;.
* Alice holds x € f~1(0), Bob holds y € f~1(1).
e They want to find an index i such that x; # y;.

Depth d, size S circuit computing f < d round protocol for KW} with logS communication

1
Corollary. Any d-round protocol that computes KWg  must communicate Q(nﬂ) bits.




The pointer chasing problem

» Alice holds f; € [n]", Bob hold f; € [n]™. fa IB

» The k step pointer chasing function PCy: [n]" X [n]™ - {0,1}
> pty =1
» for odd 1’s, pt, = f4(pt, _1)
» for even r’s, pt, = fp(pt,_1)
» PCy(fa f5) = pty mod 2.

Theorem (Yehudayoff 2016). Any randomized (k — 1)-round protocol for PCj, that is correct
with probability 0.9 requires () (g — klog n) bits of communication.

This work. () (%) lower bound via a completely different, combinatorial proof.




A simple class of protocols for pointer
chasing

» Alice and Bob choose a subset I € [n] of size S = 10% uniformly at random,
and then send f;(I) and fz(I) to the other party.

» Alice and Bob run the naive (k rounds) protocol, but they can skip one round if
the pointer falls into 1.

» If the skip round never happens, Alice and Bob simply abort at the last round.

» The skip round event happen with high probability.



Gadgetless Lifting



Gadgetless lifting

» Identify a simple class of protocols XK.

» Prove lower bound for these simple protocols.

» Prove that every protocol can be simulated by a combination of simple protocols.
CC(f) == . cgrr%lllglutesf cc(I) = min CC(IT) =: CCy (ID).

» For pointer chasing, K is the set of protocols where Alice and Bob only send
values of some coordinate to each other.



Lifting theorems

» Let g:{0,1}9 x {0,1}9 - {0,1} be a gadget function.

» Consider functions of the form f o g™ for some outer function f: {0,1}"* — {0,1},
(f S gn)((xlr yl)r ey (xnyn)) = f(g(xlr yl)r ey g(xnr yn))

CC(fog™) =Q(Q(f) - q), where Q(f) denotes the query complexity of f.

» Not all functions can be written as f o g".

» Often need g to be large.

» Proving lift theorems for constant gadget size q is very hard and has many implications.



Decomposition and Sampling Process



Density restoring partition

1

Def. For a random variable X, its min-entropy is defined as Ho, (X) = logm.

Def. We say a random variable X over [n]/ is y-dense if HOO(X(I)) >ylogn |I| forall I < ].

For a set X, X := uniform distribution over X.

Theorem([GPW 7]). For any X < [n]/, there is a partition X = X' U ---U X" and each X! is
associated with a set I; with the following properties.

« X'is fixed on I;: there exists some a; € [n]’ such that x(I;) = a; for all x € X*.

e X'(J\I) is y-dense.

* Do (X'U\ 1)) < Do) — (1 =P logn |Ii] + &, where §; = log

| U XIT

» Do (X) == |J|logn — He(X) if X is supported on [n]’. | NN 1111415]1]4[1] ]

dense I;



Protocol tree

» For each internal vertex v,
» vis owned by either Alice or Bob

» v corresponds to a rectangle II,, = X;, X Y,,, the
input that leads to v.

» v has two children ug, u;

» If v is owned by Alice, X;, U X, is a partition of X,
and Y, =Y, =Y.

» If v is owned by Bob, Y, UY, is a partition of ¥,
and X, = X, = X.

» Each leaf specifies an output.



Yao’s min-max principle

To prove lower bound for all randomized protocols, it suffices to prove lower
bound for all deterministic protocols under some input distribution p.

Here we let i to be the uniform distribution on all inputs [n]™ X [n]™.




Decomposition and sampling process DS (H)l

. R
Input: A protocol I1 Pr[DS(IT) outputs R] = .| |
Output:A rectangle R = X XY C [n]" X [n]", J4, Jg € [n]. |all inputs |

Initialization: X :=Y := [n]", ], := J5 := [n], skip := false,r := 0,v := root.

Partition X into X = X° U X! according to node v.
1x2)| Suppose Alice owns node v.

2. Sample b € {0,1} such that Pr[b = b] = Tk Let uy, u; be the children of v.

3. Update X := Xb,v = Up.

4. If u, is owned by Bob:
» Further partition X into X = X% U X* where X? = {f, € X : f4(z,_,) mod 2 = b}. As a new round begins,
_ X7

we do an extra partition
» Sample b € {0,1} such that Pr[b = b] = - to fix the parity of pt,.

» Update X = X% r =71+ 1.
5. LetX = X1 U--UX™ be density restoring partition of X with associated I, ..., Iy,.

, .o X .
6. Sample a random element j € [m] such that Pr[j = j] = X for j € [m]. X, s fixed
7. Update X = XJ,], =Jo \ . _ 1]1]4|5[1]4[1] X; , is dense.
8. If uy is owned by Bob z,._; € Jp, skip := true. Ja



Loop invariant

Input: A protocol II
Output:A rectangle R = X XY C [n]" X [n]", J4, Jg € [n].
Initialization: X := Y := [n]|", ], == J5 := [n],skip := false,r := 0,v := root.

Lemma. Sety =1 — %. Then in the running of DS(I1), we have the following loop invariants: After

each iteration,
> X XY CII,.
X(J4),Y(Jp) are y-dense.

>
> There exists some a, € [n]/4, az € [n]7B such that x(J) = a,,v(Jg) = ag forallx € X,y €Y.
>

There exichh that pt,(fa, fg) = z, forall f, € X, fp EY.

We only fix the party but the density restoring partition helps to fix pt,..
This is way we save the k logn factor in the previous result.




Relating accuracy and average fixed size

Input: A protocol II
Output:A rectangle R = X XY C [n]" X [n]", J4, Jg € [n].
Initialization: X :=Y := [n]", ], := Jg == [n], skip := false,r := 0,v = root.

Lemma. If DS(IT) outputs (R = X X Y, J4,/p) and skip = false in the end, then
0.1

o B0 G fe) = PCfa, fi)] < -

Lemma. Pr[skip = true] < 2;—1 k- E[lJ4l + /5]
S~
j \

Union bound for k rounds

If we can prove E[|]4] + |/5|] = 0(c), then we have
20.1

“ k0@ =0 = c=a(7).



Average fixed size is bounded by communication:

A density increment argument

» In the running of DS(IT), we track the value of the following value:

Doo(R) = Doo(X(J4)) + Do (Y Up)).

» In the beginning, D, ([n]™ X [n]™) = 0.

Doo(X) = Ul logn - Hoo (X)

» In expectation (over the choice of b), each communication bit/new round increase D, (R) by at

most 1:

X0 IX0 XY 1KY
(0] (0]
X108 TxT T X

<1

Since X is fixed outside J4,

X(J4) is a uniform distribution.

» In expectation (over the choice of j), D, (R) decreases by at least (1 —y) logn Ej[|lj|] + 1.
> Do, (X! \ 1)) < Doo(X) = (1 =) logn|I;| + & where §; = log

> E;[5;] =36 Z])ojlogZ fo—dx<1

1-x

> Do (R) 2 0> EllJul + Upl] = Elll| + 5] + - +] < 0 (

(o

(1-y)lo

| X|
| Ujsi X1

)

_I]
P

total increment = total decrement.
Not a round-by-round bound!




Recap

» The decomposition and sampling process: Use density restoring
partition to decompose the behavior of Il into the combination of simple
protocols (i.e., fixing some coordinates).

» Relating accuracy and average fixed size.

» Average fixed size is bounded by communication.



Discussion

» More generic density restoring partition?
» Open question: Can we prove parity not in ACO using a top-down approach?
» [RSS’ FOCS 23] gave a proof for depth 4 circuits.

» Round communication trade-off for other problems?

Theorem.Any randomized (k — 1)-round protocol (where Alice speaks first) for PC) that

is correct with probability 0.9 requires () (%) bits of communication.




Thanks for listening ©



Appendix: Proof of density restoring
partition lemma

A greedy algorithm
* Input: X € [n]/.
« Output:a partition X = X1 U--UX™and I, ..., I,,, € []].
* WhileX #0
I. Find the maximal I € J such that X; is not y-dense.
e 3q; € [n]'s.t. x(P_l;([x(I) =a;] =nvM,

2 Xt ={xeXx()=a}l =1
3 X=X\X, ] =J\I,i=i+1.

» X'is fixed on I; by construction.

» X'(J\ ) is y-dense:if not,then 3 K < J \ I; that violates the min-entropy condition
at the moment [; is chosen.

> PI)‘(i[x(K) = B] = nVIKl,

» [; UK violates the maximality of I;.



