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Round Communication Trade-Off and 
Pointer Chasing
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Round communication trade-off 3

Do more rounds of interaction allow
two parties to solve problems with less communication?

Theorem.  Any circuit of depth 𝑑 that computes ⊕ must be of size Ω 2
భ

 షభ . 

Karchmer-Wigderson game 𝐾𝑊.

• Alice holds 𝑥 ∈ 𝑓ିଵ 0 , Bob holds 𝑦 ∈ 𝑓ିଵ 1 .
• They want to find an index 𝑖 such that 𝑥 ≠ 𝑦 .

Depth 𝑑, size 𝑆 circuit computing 𝑓 ⇔ 𝑑 round protocol for 𝐾𝑊 with log 𝑆 communication

Example. Parity and constant-depth circuits

Corollary.  Any 𝑑-round protocol that computes 𝐾𝑊⊕
must communicate Ω 𝑛

భ

 షభ bits. 



The pointer chasing problem

 Alice holds 𝑓 ∈ 𝑛 , Bob hold 𝑓 ∈ 𝑛 . 

 The 𝑘 step pointer chasing function 𝑃𝐶: 𝑛  × 𝑛  → 0,1

 𝑝𝑡  ≔ 1

 for odd 𝑟’s, 𝑝𝑡 ≔ 𝑓 𝑝𝑡 ିଵ

 for even 𝑟’s, 𝑝𝑡 ≔ 𝑓 𝑝𝑡ିଵ

 𝑃𝐶 𝑓, 𝑓 ≔ 𝑝𝑡 mod 2.
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Theorem (Yehudayoff 2016).  Any randomized 𝑘 − 1 -round protocol for 𝑃𝐶 that is correct 

with probability 0.9 requires Ω



− 𝑘 log 𝑛  bits of communication. 

This work. Ω



lower bound via a completely different, combinatorial proof.

𝑓 𝑓



A simple class of protocols for pointer 
chasing

 Alice and Bob choose a subset 𝐼 ⊆ [𝑛] of size 𝑆 ≔ 10



  uniformly at random,  

and then send 𝑓(𝐼) and  𝑓 𝐼 to the other party.

 Alice and Bob run the naïve (𝑘 rounds) protocol,  but they can skip one round if 
the pointer falls into 𝐼.

 If the skip round never happens,  Alice and Bob simply abort at the last round. 

 The skip round event happen with high probability.
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Gadgetless Lifting
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Gadgetless lifting

 Identify a simple class of protocols 𝒦.

 Prove lower bound for these simple protocols.

 Prove that every protocol can be simulated by a combination of simple protocols.

𝐶𝐶 𝑓 ≔ min
ஈ∶ஈ ୡ୭୫୮୳୲ୣୱ 

𝐶𝐶 Π = min
ஈ∈𝒦

𝐶𝐶 Π =: 𝐶𝐶𝒦 Π .

 For pointer chasing, 𝒦 is the set of protocols where Alice and Bob only send 
values of some coordinate to each other.
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Lifting theorems

 Let 𝑔: 0, 1  × 0,1  → 0,1 be a gadget function.

 Consider functions of the form 𝑓 ∘ 𝑔 for some outer function 𝑓: 0,1  → 0,1 ,

𝑓 ∘ 𝑔 𝑥ଵ, 𝑦ଵ , … , 𝑥𝑦 ≔ 𝑓 𝑔 𝑥ଵ, 𝑦ଵ , … , 𝑔 𝑥, 𝑦 .

𝐶𝐶 𝑓 ∘ 𝑔 = Ω 𝑄 𝑓 ⋅ 𝑞 , where 𝑄(𝑓) denotes the query complexity of 𝑓.
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 Not all functions can be written as 𝑓 ∘ 𝑔.

 Often need 𝑞 to be large. 

 Proving lift theorems for constant gadget size 𝑞 is very hard and has many implications.



Decomposition and Sampling Process
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Density restoring partition

 𝐃ஶ 𝑿 ≔  𝐽  log 𝑛 − 𝐇ஶ(𝑿) if 𝑿 is supported on 𝑛 .

Def. We say a random variable 𝑿 over  𝑛  is 𝛾-dense if 𝐇ஶ 𝑿 𝐼 ≥ 𝛾 log 𝑛 𝐼 for all 𝐼 ⊆ 𝐽. 

Theorem([GPW17]). For any 𝑋 ⊆ 𝑛 , there is a partition 𝑋 = 𝑋ଵ ∪ ⋯ ∪ 𝑋 and each 𝑋 is 
associated with a set 𝐼 with the following properties. 
• 𝑋 is fixed on 𝐼: there exists some 𝛼 ∈ 𝑛 ூ such that 𝑥 𝐼 = 𝛼 for all 𝑥 ∈ 𝑋.   
• 𝑿 𝐽 ∖ 𝐼 is 𝛾-dense.

• 𝐃ஶ 𝑿 𝐽 ∖ 𝐼 ≤  𝐃ஶ 𝑋 − 1 − 𝛾 log 𝑛 𝐼 +  𝛿 where 𝛿 = log
||

| ⋃ ೕ
ೕಱ |

.
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Def. For a random variable 𝑿, its min-entropy is defined as 𝐇ஶ 𝑿  ≔ log
ଵ

୫ୟ୶
ೣ

୰ 𝑿ୀ௫
.

1 1 4 5 1 4 1|

dense 𝐼

For a set 𝑋, 𝑿 ≔ uniform distribution over 𝑋.



Protocol tree

 For each internal vertex 𝑣, 

 𝑣 is owned by either Alice or Bob 

 𝑣 corresponds to a rectangle Π௩ = 𝑋௩ × 𝑌௩, the 
input that leads to 𝑣. 

 𝑣 has two children 𝑢, 𝑢ଵ

 If 𝑣 is owned by Alice, 𝑋௨బ
∪ 𝑋௨భ

is a partition of 𝑋௩

and 𝑌௨బ
= 𝑌௨భ

= 𝑌.

 If 𝑣 is owned by Bob, 𝑌௨బ
∪ 𝑌௨భ

is a partition of 𝑌௩

and 𝑋௨బ
= 𝑋௨భ

= 𝑋.

 Each leaf specifies an output. 
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Yao’s min-max principle 12

To prove lower bound for all randomized protocols, it suffices to prove lower 
bound for all deterministic protocols under some input distribution 𝜇.

Here we let 𝜇 to be the uniform distribution on all inputs 𝑛  × 𝑛 .



Decomposition and sampling process 

1. Partition 𝑋 into 𝑋 = 𝑋 ∪ 𝑋ଵ according to node 𝑣.

2. Sample 𝒃 ∈ 0,1 such that Pr 𝒃 = 𝑏 =
್


.

3. Update 𝑋 ≔ 𝑋𝒃, 𝑣 ≔ 𝑢𝒃.

4. If 𝑢 is owned by Bob:

 Further partition 𝑋 into 𝑋 = 𝑋 ∪ 𝑋ଵ where 𝑋  ≔ 𝑓 ∈ 𝑋 ∶ 𝑓 𝑧ିଵ  𝑚𝑜𝑑 2 = 𝑏 .

 Sample 𝒃 ∈ 0,1 such that Pr 𝒃 = 𝑏 =
್


.

 Update 𝑋 ≔ 𝑋𝒃, 𝑟 ≔ 𝑟 + 1.

5. Let 𝑋 = 𝑋ଵ ∪ ⋯ ∪ 𝑋 be density restoring partition of 𝑋 with associated 𝐼ଵ, … , 𝐼.

6. Sample a random element 𝒋 ∈ 𝑚 such that Pr 𝒋 = 𝑗 =
ೕ


 for 𝑗 ∈ 𝑚 .

7. Update 𝑋 ≔ 𝑋𝒋, 𝐽  ≔ 𝐽 ∖ 𝐼𝒋.

8. If 𝑢 is owned by Bob 𝑧ିଵ ∉ 𝐽, skip := true.
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Input: A protocol Π
Output: A rectangle 𝑅 = 𝑋 × 𝑌 ⊆ 𝑛  × 𝑛 ,  𝐽, 𝐽 ⊆ 𝑛 . 
Initialization: 𝑋 ≔ 𝑌 ≔ 𝑛 , 𝐽 ≔ 𝐽 ≔ 𝑛 , skip ≔ 𝑓𝑎𝑙𝑠𝑒, 𝑟 ≔ 0, 𝑣 ≔ 𝑟𝑜𝑜𝑡.

As a new round begins, 
we do an extra partition 
to fix the parity of 𝑝𝑡.

Suppose Alice owns node 𝑣.
Let 𝑢, 𝑢ଵ be the children of 𝑣.

𝑋ூೕ
is fixed; 

𝑋ಲ
is dense. 1 1 4 5 1 4 1|

𝐽

Pr 𝐷𝑆 Π  outputs 𝑅 =
|𝑅|

all inputs 



Loop invariant

Lemma. Set 𝛾 ≔ 1 −
.ଵ

୪୭  
. Then in the running of 𝐷𝑆 Π , we have the following loop invariants: After 

each iteration,

 𝑋 × 𝑌 ⊆ Π௩.

 𝑿 𝐽 , 𝒀(𝐽) are 𝛾-dense.

 There exists some 𝛼 ∈ 𝑛 ಲ, 𝛼 ∈ 𝑛 ಳ such that 𝑥 𝐽
ഥ = 𝛼, 𝑦 𝐽

ഥ = 𝛼 for all 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌.

 There exists some 𝑧 ∈ 𝑛 such that 𝑝𝑡 𝑓 , 𝑓 = 𝑧 for all 𝑓 ∈ 𝑋, 𝑓 ∈ 𝑌.
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Input: A protocol Π
Output: A rectangle 𝑅 = 𝑋 × 𝑌 ⊆ 𝑛  × 𝑛 ,  𝐽, 𝐽 ⊆ 𝑛 . 
Initialization: 𝑋 ≔ 𝑌 ≔ 𝑛 , 𝐽 ≔ 𝐽 ≔ 𝑛 , skip ≔ 𝑓𝑎𝑙𝑠𝑒, 𝑟 ≔ 0, 𝑣 ≔ 𝑟𝑜𝑜𝑡.

We only fix the party but the density restoring partition helps to fix 𝑝𝑡 .
This is way we save the 𝑘 log 𝑛 factor in the previous result.



Relating accuracy and average fixed size

If we can prove 𝐄 𝐽
ഥ + 𝐽

ഥ = 𝑂 𝑐 , then we have 
2.ଵ

𝑛
⋅ 𝑘 ⋅ 𝑂 𝑐 = Ω 1 ⇒  𝑐 = Ω

𝑛

𝑘
.
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Lemma. If 𝐷𝑆 Π outputs 𝑅 = 𝑋 × 𝑌, 𝐽, 𝐽 and skip = 𝑓𝑎𝑙𝑠𝑒 in the end, then 

Pr
ಲ,ಳ ←ோ

Π 𝑓, 𝑓 = 𝑃𝐶 𝑓, 𝑓 ≤
2.ଵ

2
. 

Input: A protocol Π
Output: A rectangle 𝑅 = 𝑋 × 𝑌 ⊆ 𝑛  × 𝑛 ,  𝐽, 𝐽 ⊆ 𝑛 . 
Initialization: 𝑋 ≔ 𝑌 ≔ 𝑛 , 𝐽 ≔ 𝐽 ≔ 𝑛 , skip ≔ 𝑓𝑎𝑙𝑠𝑒, 𝑟 ≔ 0, 𝑣 ≔ 𝑟𝑜𝑜𝑡.

Lemma. Pr skip = 𝑡𝑟𝑢𝑒 ≤ 
ଶబ.భ


⋅ 𝑘 ⋅ 𝐄 𝐽

ഥ + 𝐽
ഥ .

Union bound for 𝑘 rounds



Average fixed size is bounded by communication: 
A density increment argument

 In the running of 𝐷𝑆 Π , we track the value of the following value:

𝐷ஶ 𝑅  ≔ 𝐷ஶ 𝑋 𝐽 + 𝐷ஶ 𝑌 𝐽 . 

 In the beginning, 𝐷ஶ 𝑛  × 𝑛  = 0.

 In expectation (over the choice of 𝒃), each communication bit/new round increase 𝐷ஶ 𝑅 by at 
most 1:

𝑋

𝑋
log

𝑋

𝑋
+

𝑋ଵ

𝑋
log

𝑋ଵ

𝑋
≤ 1.

 In expectation (over the choice of 𝒋),  𝐷ஶ 𝑅 decreases by at least 1 − 𝛾 log 𝑛 𝐄 𝐼 + 1.

 𝐃ஶ 𝑿 𝐽 ∖ 𝐼 ≤  𝐃ஶ 𝑋 − 1 − 𝛾 log 𝑛 𝐼 +  𝛿 where 𝛿 = log
||

| ⋃ ೕ
ೕಱ |

.

 𝐄𝒋 𝛿𝒋 = ∑ 𝑝 𝛿 = ∑ 𝑝 log
ଵ

∑ ಱೕ 
 ≤ ∫

ଵ

ଵି௫
 𝑑𝑥 ≤ 1.

ଵ



 𝐷ஶ 𝑅 ≥ 0  𝐄 𝐽
ഥ + 𝐽

ഥ  = 𝐄 𝐼ଵ + 𝐼ଶ + ⋯ + ≤ 𝑂


ଵିఊ ୪୭
.
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𝐃ஶ 𝑿 ≔  𝐽 log 𝑛 −  𝐇ஶ 𝑿

Since 𝑋 is fixed outside 𝐽, 
𝑿 𝐽 is a uniform distribution.

𝑝 ≔
𝑋

𝑋

total increment ≥ total decrement.
Not a round-by-round bound!



Recap

 The decomposition and sampling process: Use density restoring 
partition to decompose the behavior of Π into the combination of simple 
protocols (i.e., fixing some coordinates).

 Relating accuracy and average fixed size.

 Average fixed size is bounded by communication. 
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Discussion

 More generic density restoring partition?

 Open question: Can we prove parity not in AC0 using a top-down approach?

 [RSS’ FOCS 23] gave a proof for depth 4 circuits.

 Round communication trade-off for other problems?
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Theorem. Any randomized 𝑘 − 1 -round protocol (where Alice speaks first) for 𝑃𝐶 that 

is correct with probability 0.9 requires Ω



 bits of communication. 



Thanks for listening 
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Appendix: Proof of density restoring 
partition lemma

 𝑋 is fixed on 𝐼 by construction. 

 𝑋 𝐽 ∖ 𝐼  is 𝛾-dense: if not, then ∃ 𝐾 ⊆ 𝐽 ∖ 𝐼 that violates the min-entropy condition 
at the moment 𝐼 is chosen. 

 Pr
௫←

𝑥 𝐾 = 𝛽 ≥ 𝑛ିఊ  .

 𝐼 ∪ 𝐾 violates the maximality of 𝐼 .
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A greedy algorithm
• Input: 𝑋 ⊆ 𝑛 .
• Output: a partition 𝑋 = 𝑋ଵ ∪ ⋯ ∪ 𝑋 and 𝐼ଵ, … , 𝐼 ⊆ 𝐽 .
• While 𝑋 ≠ ∅

1. Find the maximal 𝐼 ⊆ 𝐽 such that 𝑋ூ is not 𝛾-dense.
• ∃𝛼 ∈ 𝑛 ூ 𝑠. 𝑡.  Pr

௫←
𝑥 𝐼 = 𝛼 ≥ 𝑛ିఊ ூ  .

2. 𝑋  ≔ 𝑥 ∈ 𝑋: 𝑥(𝐼) = 𝛼 , 𝐼 ≔ 𝐼. 
3. 𝑋 ≔ 𝑋 ∖ 𝑋, 𝐽 ≔ 𝐽 ∖ 𝐼, 𝑖 ≔ 𝑖 + 1.


