1

Improved Lower Bounds for Pointer Chasing via Gadgetless Lifting

Xinyu Mao, Guangxu Yang, and Jiapeng Zhang

University of Southern California

2024/05/24 @Complexity Network

Round Communication Trade-Off and Pointer Chasing

Round communication trade-off

Do more rounds of interaction allow two parties to solve problems with less communication?

Example. Parity and constant-depth circuits

Theorem. Any circuit of depth d that computes \bigoplus_n must be of size $\Omega\left(2^{n^{\frac{1}{d-1}}}\right)$.

Karchmer-Wigderson game KW_f .

- Alice holds $x \in f^{-1}(0)$, Bob holds $y \in f^{-1}(1)$.
- They want to find an index *i* such that $x_i \neq y_i$.

Depth *d*, size *S* circuit computing $f \Leftrightarrow d$ round protocol for KW_f with $\log S$ communication

Corollary. Any *d*-round protocol that computes KW_{\bigoplus_n} must communicate $\Omega(n^{\frac{1}{d-1}})$ bits.

The pointer chasing problem

▶ Alice holds $f_A \in [n]^n$, Bob hold $f_B \in [n]^n$.

- The k step pointer chasing function $PC_k: [n]^n \times [n]^n \to \{0,1\}$
 - ▶ $pt_0 \coloneqq 1$
 - ▶ for odd *r*'s, $pt_r \coloneqq f_A(pt_{r-1})$
 - ▶ for even *r*'s, $pt_r \coloneqq f_B(pt_{r-1})$
 - $\blacktriangleright PC_k(f_A, f_B) \coloneqq pt_k \bmod 2.$

Theorem (Yehudayoff 2016). Any randomized (k - 1)-round protocol for PC_k that is correct with probability 0.9 requires $\Omega\left(\frac{n}{k} - k \log n\right)$ bits of communication.

This work. $\Omega\left(\frac{n}{k}\right)$ lower bound via a completely different, combinatorial proof.

4

A simple class of protocols for pointer chasing

- ► Alice and Bob choose a subset $I \subseteq [n]$ of size $S \coloneqq 10\frac{n}{k}$ uniformly at random, and then send $f_A(I)$ and $f_B(I)$ to the other party.
- Alice and Bob run the naïve (k rounds) protocol, but they can skip one round if the pointer falls into I.
- ▶ If the skip round never happens, Alice and Bob simply abort at the last round.
- The skip round event happen with high probability.

Gadgetless Lifting

7

Gadgetless lifting

- Identify a simple class of protocols \mathcal{K} .
- Prove lower bound for these simple protocols.
- Prove that every protocol can be simulated by a combination of simple protocols.

$$CC(f) \coloneqq \min_{\Pi:\Pi \text{ computes } f} CC(\Pi) = \min_{\Pi \in \mathcal{K}} CC(\Pi) =: CC_{\mathcal{K}}(\Pi).$$

For pointer chasing, \mathcal{K} is the set of protocols where Alice and Bob only send values of some coordinate to each other.

Lifting theorems

- Let $g: \{0, 1\}^q \times \{0, 1\}^q \rightarrow \{0, 1\}$ be a **gadget** function.
- Consider functions of the form $f \circ g^n$ for some outer function $f: \{0,1\}^n \to \{0,1\}, (f \circ g^n)((x_1, y_1), \dots, (x_n y_n)) \coloneqq f(g(x_1, y_1), \dots, g(x_n, y_n)).$

 $CC(f \circ g^n) = \Omega(Q(f) \cdot q)$, where Q(f) denotes the query complexity of f.

- ▶ Not all functions can be written as $f \circ g^n$.
- Often need q to be large.
 - Proving lift theorems for constant gadget size q is very hard and has many implications.

Decomposition and Sampling Process

Density restoring partition

Def. For a random variable X, its min-entropy is defined as $H_{\infty}(X) \coloneqq \log \frac{1}{\max_{x} \Pr[X=x]}$.

Def. We say a random variable X over $[n]^J$ is γ -dense if $\mathbf{H}_{\infty}(X(I)) \ge \gamma \log n |I|$ for all $I \subseteq J$.

For a set X, X := uniform distribution over X.

Theorem([GPW17]). For any $X \subseteq [n]^J$, there is a partition $X = X^1 \cup \cdots \cup X^r$ and each X^i is associated with a set I_i with the following properties.

- X^i is fixed on I_i : there exists some $\alpha_i \in [n]^{I_i}$ such that $x(I_i) = \alpha_i$ for all $x \in X^i$.
- $X^i(J \setminus I_i)$ is γ -dense.

•
$$\mathbf{D}_{\infty}\left(\mathbf{X}^{i}(J \setminus I_{i})\right) \leq \mathbf{D}_{\infty}(X) - (1 - \gamma)\log n |I_{i}| + \delta_{i} \text{ where } \delta_{i} = \log \frac{|X|}{|\bigcup_{j \geq i} X^{j}|}$$

•
$$\mathbf{D}_{\infty}(X) \coloneqq |J| \log n - \mathbf{H}_{\infty}(X)$$
 if X is supported on $[n]^{J}$.

Protocol tree

- For each internal vertex v,
 - \blacktriangleright *v* is owned by either Alice or Bob
 - v corresponds to a rectangle $\Pi_v = X_v \times Y_v$, the input that leads to v.
 - \blacktriangleright *v* has two children u_0, u_1
 - If v is owned by Alice, $X_{u_0} \cup X_{u_1}$ is a partition of X_v and $Y_{u_0} = Y_{u_1} = Y$.

П

- If v is owned by Bob, $Y_{u_0} \cup Y_{u_1}$ is a partition of Y_v and $X_{u_0} = X_{u_1} = X$.
- Each leaf specifies an output.

Yao's min-max principle

To prove lower bound for all **randomized** protocols, it suffices to prove lower bound for all **deterministic** protocols under some input distribution μ .

Here we let μ to be the uniform distribution on all inputs $[n]^n \times [n]^n$.

Decomposition and sampling process $DS(\Pi)$ ¹³

Loop invariant

Input: A protocol Π Output: A rectangle $R = X \times Y \subseteq [n]^n \times [n]^n$, J_A , $J_B \subseteq [n]$. Initialization: $X \coloneqq Y \coloneqq [n]^n$, $J_A \coloneqq J_B \coloneqq [n]$, skip $\coloneqq false, r \coloneqq 0, v \coloneqq root$.

Lemma. Set $\gamma \coloneqq 1 - \frac{0.1}{\log n}$. Then in the running of $DS(\Pi)$, we have the following loop invariants: After each iteration,

- ► $X \times Y \subseteq \Pi_{v}$.
- $X(J_A), Y(J_B)$ are γ -dense.
- ► There exists some $\alpha_A \in [n]^{\overline{J_A}}, \alpha_B \in [n]^{\overline{J_B}}$ such that $x(\overline{J_A}) = \alpha_A, y(\overline{J_B}) = \alpha_B$ for all $x \in X, y \in Y$.
- ▶ There exists some $z_r \in [n]$ such that $pt_r(f_A, f_B) = z_r$ for all $f_A \in X$, $f_B \in Y$.

We only fix the party but the density restoring partition helps to fix pt_r . This is way we save the $k \log n$ factor in the previous result.

Relating accuracy and average fixed size

Input: A protocol Π Output: A rectangle $R = X \times Y \subseteq [n]^n \times [n]^n$, J_A , $J_B \subseteq [n]$. Initialization: $X \coloneqq Y \coloneqq [n]^n$, $J_A \coloneqq J_B \coloneqq [n]$, skip $\coloneqq false$, $r \coloneqq 0$, $v \coloneqq root$.

Lemma. If $DS(\Pi)$ outputs $(R = X \times Y, J_A, J_B)$ and skip = *false* in the end, then $\Pr_{(f_A, f_B) \leftarrow R}[\Pi(f_A, f_B) = PC_k(f_A, f_B)] \le \frac{2^{0.1}}{2}.$

Lemma.
$$\Pr[\text{skip} = true] \leq \frac{2^{0.1}}{n} \cdot k \cdot \mathbb{E}[|\overline{J_A}| + |\overline{J_B}|].$$

Union bound for k rounds
If we can prove $\mathbb{E}[|\overline{J_A}| + |\overline{J_B}|] = O(c)$, then we have
 $\frac{2^{0.1}}{n} \cdot k \cdot O(c) = \Omega(1) \Rightarrow c = \Omega\left(\frac{n}{k}\right).$

Average fixed size is bounded by communication: A density increment argument

• In the running of $DS(\Pi)$, we track the value of the following value:

$$D_{\infty}(R) \coloneqq D_{\infty}(X(J_A)) + D_{\infty}(Y(J_B)).$$

$$\mathbf{D}_{\infty}(\boldsymbol{X}) \coloneqq |J| \log n - \mathbf{H}_{\infty}(\boldsymbol{X})$$

6

- In the beginning, $D_{\infty}([n]^n \times [n]^n) = 0$.
- ▶ In expectation (over the choice of **b**), each communication bit/new round increase $D_{\infty}(R)$ by at most 1:

$$\frac{|X^0|}{|X|}\log\frac{|X^0|}{|X|} + \frac{|X^1|}{|X|}\log\frac{|X^1|}{|X|} \le 1.$$

Since X is fixed outside J_A , $X(J_A)$ is a uniform distribution.

- ► In expectation (over the choice of *j*), $D_{\infty}(R)$ decreases by at least $(1 \gamma) \log n \mathbf{E}_j[|I_j|] + 1$.
 - ► $\mathbf{D}_{\infty}\left(\mathbf{X}^{i}(J \setminus I_{i})\right) \leq \mathbf{D}_{\infty}(X) (1 \gamma)\log n |I_{i}| + \delta_{i}$ where $\delta_{i} = \log \frac{|X|}{|\bigcup_{j \geq i} X^{j}|}$.
 - $\blacktriangleright \mathbf{E}_{j}[\delta_{j}] = \sum_{j} p_{j} \, \delta_{j} = \sum_{j} p_{j} \log \frac{1}{\sum_{t \ge j} p_{t}} \le \int_{0}^{1} \frac{1}{1-x} \, dx \le 1.$

 $D_{\infty}(R) \ge 0 \rightarrow \mathbf{E}[|\overline{J_A}| + |\overline{J_B}|] = \mathbf{E}[|I_1| + |I_2| + \dots +] \le O\left(\frac{c}{(1-\gamma)\log c}\right)$

 $p_j \coloneqq \frac{|X^j|}{|X|}$

total increment \geq total decrement. Not a round-by-round bound!

17

Recap

- The decomposition and sampling process: Use density restoring partition to decompose the behavior of Π into the combination of simple protocols (i.e., fixing some coordinates).
- ► Relating accuracy and **average fixed size**.
- Average fixed size is bounded by communication.

Discussion

- More generic density restoring partition?
- ▶ Open question: Can we prove parity not in AC0 using a top-down approach?
 - ▶ [RSS' FOCS 23] gave a proof for depth 4 circuits.
- Round communication trade-off for other problems?

Theorem. Any randomized (k - 1)-round protocol (where Alice speaks first) for PC_k that is correct with probability 0.9 requires $\Omega\left(\frac{n}{k}\right)$ bits of communication.

Thanks for listening 🙂

Appendix: Proof of density restoring partition lemma

A greedy algorithm

- Input: $X \subseteq [n]^J$.
- Output: a partition $X = X^1 \cup \cdots \cup X^m$ and $I_1, \ldots, I_m \subseteq [J]$.
- While $X \neq \emptyset$
 - I. Find the maximal $I \subseteq J$ such that X_I is not γ -dense.

•
$$\exists \alpha_i \in [n]^I \text{ s.t. } \Pr_{x \leftarrow X}[x(I) = \alpha_i] \ge n^{-\gamma|I|}$$

2.
$$X^i \coloneqq \{x \in X \colon x(I) = \alpha_i\}, I_i \coloneqq I.$$

3.
$$X \coloneqq X \setminus X^i$$
, $J \coloneqq J \setminus I_i$, $i \coloneqq i+1$

- X^i is fixed on I_i by construction.
- $X^i(J \setminus I_i)$ is γ -dense: if not, then $\exists K \subseteq J \setminus I_i$ that violates the min-entropy condition at the moment I_i is chosen.
 - $\Pr_{x \leftarrow X^i}[x(K) = \beta] \ge n^{-\gamma|K|}.$
 - $I_i \cup K$ violates the maximality of I_i .