=
= =
o=
o
poV)
=

Factoring

ALGORITHMS AND HARDNESS ASSUMPTIONS

Outline

» Algorithms for factoring (N = pq)

INTRODUCTION TO

» Pollard’s p — 1 algorithm: it is effective if p — 1 has only small prime MODERN
factors. CRYPSTO(EE_RAPHY
o 1
» Pollard’s rho algorithm: runs in o(N3). | Yok g

» Quadratic sieve algorithm(§ 15.3): runs in sub-exponential time, i.e.,
Zo(log N). [Based on A Tale of Two Sieves by Carl Pomerance]

» Connection between factoring assumption and RSA Assumption

» The power of quantum computing [A famous book: Quantum
Computation and Quantum Information]

Simple Algorithms for Factoring

Preparation and Warm-up

» Assume that N = pq, where p, q are distinct primes.

» Usually, p and g each has the same length n = @(log N).

$
» x < S means choose x uniformly at random from the set S.

CRT
» Zy = Iy X Ly by CRT,and we write x «— (xp,xq) with x,, = x % p, x4 =

x % q, to denote the isomorphism.

The Main ldea behind
Pollard’s p — 1 Algorithm

» We want to find B € N such that
have

$
= p — 1 divides B.Then for x « Z}, we

Ly

(xB —1) i (xp,xq) — (1) =(xE —1,x2 —1)=(0,x5 —1).

» vy = (xB — 1)%N satisfies p | y, q + y(with high probability).
» Then gcd(y,N) = p.
» How to find B?
» If p — 1 has no large factor, we set
ﬁ llogpl !
i=1

» k has to be small for efficiency.

» If g has a factor greater that py, everything works.

Pollard’s p — 1 Algorithm

Pollard’s p — 1 Algorithm

Input: integer N
Output: A non-trivial factor of N

$
1 x « Zy
2y =xB —1)%N
3. p = ged(y,N)
4. Ifp & {1, N} returnp

The Main Idea behind Pollard’s rho
algorithm

» If we have x,x" € Zj with x = x' (imod p), then x"' := x — x" is a multiple of p.
» Find a collision. Randomly sample x@, x@ ... x(®)_|n the argument of

1
birthday paradox, we know that if k := 0(\/5) = O(NZ), collision occurs with
high probability.
» Check all pairs (i, j) € [k]?? This is as bad as trial division!.

» Recall how we find a collision of a hash function.

Theorem. Let x4, X, ..., X4 be a sequence of values with x;1 = H(xy). If x; = x;
for some (i,) € [q]? then 3 k € [j — 1] s.t. x;, = Xpp.

Pollard’s rho algorithm

Pollard’s rho Algorithm

Input: N(product of two n-bit primes)
Output: A non-trivial factor of N

1 xe Zy,x =x

2. Fori=1to 2™/?

x = H(x)

x' = H(H("))

p = gcd(x — x',N)
If p € {1, N} return p

The ‘hash function’ H must satisfy
x =x' (modp) = H(x) =H(x").

A standard choice is H(x) = (x? + 1)%N.

» In fact, any polynomial will do.
Each iteration takes only O (polylog(n)) time,
and thus the total running time is 0 (23) =
o(n3).

It is space efficient.

WVe can also use the same technique to solve
discrete logarithm(see § [1.2.5).

Quadpratic Sieve Algorithm

A SUB-EXPONENTIAL ALGORITHM FOR FACTORING

The First Idea

» Given x,y € Z* with x? = y% (mod N) and, we can factor N as follows.
> x2 —y?2=(x+y)(x —y) =0 (mod N).Thatis, N|(x + y)(x — y).

» Ifx # +y (mod N),we have N t (x + y)and N t (x — y).Then gcd(x —y,N) is a
non-trivial factor of N.

» How to find such x,y ?

» A naive way: x « Zy, check if g = x? % N is a square. If ¢ = y? for some y € Z*, we
have x2 = y2 (mod N) .

» eg N=35 x=12,q=122%35=4 -y = 2.

» Improvement: x;, X ..., X, < Zy and set q; = x7 % N.Next, try to find a subset S €
[£] such that [];c q; is a square.

Smooth Numbers

» How to check whether [];cs g; is a square efficiently?
» How nice would It be if we can figure out the factoring of each g; !

» Definition. Let y € R* and m € Z*. We say that m is y-smooth if all prime
divisors of m are at most Y.

» Fix some bound B, if we make sure every q; is B-smooth, we can factor q; easily.

» Can we efficiently sample B-smooth nhumbers? This depends on the density

1
p(X,B) =)—(l{i € Z* : i < X and i is B smooth}|.

A General Plan for factoring

A General Plan for factoring
Input: N,B,?
Output: A non-trivial factor of N

1 6=0

2. Fori=1to?
Find x; € Z} such that q; := x? % N is B-smooth
(ej1, -, €jx) < Factor(q;)

3. Find a subset S € [#] such that ;. e; € 2ZF

4. x = [liesx;
Bi/2

5 Bi = Xjes€ir V= llieqpi
6. p =ged(x —y,N)
7. Ifp&{1,N}returnp

» Let {p4,...,px} be the primes < B.
eij
> q; = x2% N = Hje[k]pj J

» To ensure step 2 can succeed by
Gaussian elimination, we must set £ >
k + 1.

» Next we need to:
» Specify how to find x;.
» Choosing the optimal B.

Kraitchik’s method

How to find x such that ¢ := x2 % N is B-smooth?
Intuition: small numbers are more likely to be B-smooth.

vV v v v Y

Write s == |V/N|. Consider the sequence x; :== s + i, i € [D].
Let q; = xl-2 % N.Note that g;’s are not at all random, since q; € QR .

Heuristically, the number of good g;’s is roughly equal to p(X,B) - D.

(B)
p(X,B)

Note that we require £ > k + 1 = m(B) + 1,and hence we shall set D ~
If we factor each g; by trial division, the running time is bounded by O(D - 7(B)) =
o5

p(X.B)) "
When B = exp(—\/logXloglogX) and the minimum value of
exp(24/log X loglog X).

nB)* .
p(X,B)

1
X is about nz"°™") here, and the running time is bounded by exp(,/2 log N loglog N).

The Quadratic Sieve: a practical
Improvement

We study the polynomial F(X) :== (X + s)? — N.
How to identify B-smooth numbers in the sequence F(1), F(2), ..., F(D) more efficiently?

>
Set v[j] == F(j) forall j € [D] >
Il do the following for each p
Fori=12,..,d: >
1 j=n
2. Whilej <D do D>
|. While p|v[j] do
vljl=v[jl/p >
2 J=j+p
>

The idea of sieve: e.g. Sieve of Eratosthenes

Assume that F has d distinct roots modulo p lying in the
interval [1, p], call themry,...,7,.

For each j € [D],if p|F(j), divide v[j] by p if possible.At the
end, F(j) is B-smooth iff v[j] = 1.

Note that p|F(j) < jis a root of F(X) modulop & j =

1. (mod p) for some k € [d].

T1,...,Tq can be calculated with an algorithm for computing
modular square roots. (§ 12.5)

Running time is improved to exp(\/logN loglog N).

Relating Factoring Assumption to RSA
Assumption

Factoring Assumption

GenModulus

Input: 1"

Output: (N, p, q) where N = pq and
p, q are n-bit primes.

C A
(N,p,q) « GenModulus(1™)
N
. > Compute
< p) q p’, q’
If p'q" = N output 1;
Otherwise output 0.
The experiment Factor §enModulus ;)

» Definition. Factoring is hard relative to GenModulus if for all PPT A,
Pr[FactorfqenMOdums(n) = 1] < negl(n).

» Factoring assumption: there exists a
hard.

GenModulus relative to which factoring is

RSA Assumption

C
GenRSA
Input: 1"
N,e, d GenRSA(1"
Output: (N, e, d) such that (N,e): enRSAT) (N,e,y)
* N = pq and p, q are n—bit primes. y « Zy g
e e>landed =1 (mod go(N)). X

A

If x¢ = y output 1;
Otherwise output 0.

The experiment RSASPIRSA (7))

Compute x

» Definition. RSA problem is hard relative to GenRSA if for all PPT A,
Pr[RSAGﬂenRSA(n) - 1] < negl(n).

» RSA assumption:there exists a GenRSA relative to which RSA problem is hard.

Relations between RSA Assumption and
Factoring Assumption

» RSA assumption holds = Factoring assumption holds
» The other direction is still open.
» Theorem. Assuming that Factoring Assumption holds, then for all PPT algorithm A,
Pr[A(1™, N,e) = d] = negl(n).
» Note that 9(N)|(ed — 1).

» (§ 10.4) Given any nonzero multiple of |Zy/| , one can efficiently factor N.

The Power of Quantum Computing

Shor’s Algorithm: Reducing Factoring to
Order Finding

» If we can find a non-trivial square root of 1, then we can

FindOrder factor N easily.
Input: N, x € Zy

Output: ord(x) in Z » FindOrder can be implemented efficiently by quantum

computing devices.

Theorem. Let N = H’{’;lpfi be the factorization of a odd composite number
N.Then

ord(x) 1
1$3r [ord(x) isevenAx 2 % —1 (mod N)] >1 — =

x <Ly

Thanks for listening.©

