Xinyu Mao 11/12/2021

Factoring ALGORITHMS AND HARDNESS ASSUMPTIONS

Outline

- Algorithms for factoring (N = pq)
 - ▶ Pollard's p-1 algorithm: it is effective if p-1 has only small prime factors.
 - ▶ Pollard's rho algorithm: runs in $\tilde{O}(N^{\frac{1}{4}})$.
 - Quadratic sieve algorithm(§ 15.3): runs in sub-exponential time, i.e., 2^{o(log N)}. [Based on A Tale of Two Sieves by Carl Pomerance]
 - Connection between factoring assumption and RSA Assumption
- The power of quantum computing [A famous book: Quantum Computation and Quantum Information]

Simple Algorithms for Factoring

Preparation and Warm-up

Assume that N = pq, where p, q are distinct primes.

- Usually, p and q each has the same length $n = \Theta(\log N)$.
- $x \stackrel{\$}{\leftarrow} S$ means choose x uniformly at random from the set S.

► $\mathbb{Z}_N^* \cong \mathbb{Z}_p^* \times \mathbb{Z}_q^*$ by CRT, and we write $x \stackrel{\text{CRT}}{\longleftrightarrow} (x_p, x_q)$ with $x_p \coloneqq x \% p, x_q \coloneqq x \% q$, to denote the isomorphism.

The Main Idea behind Pollard's p - 1 Algorithm

▶ We want to find $B \in \mathbb{N}$ such that $|\mathbb{Z}_p^*| = p - 1$ divides B. Then for $x \stackrel{\$}{\leftarrow} \mathbb{Z}_N^*$, we have

$$(x^B - 1) \stackrel{\text{CRT}}{\longleftrightarrow} (x_p, x_q)^B - (1, 1) = (x_p^B - 1, x_q^B - 1) = (0, x_q^B - 1).$$

- ▶ $y \coloneqq (x^B 1)\%N$ satisfies $p \mid y, q \nmid y$ (with high probability).
- Then gcd(y, N) = p.
- ▶ How to find *B*?
 - ▶ If p 1 has no large factor, we set

$$B \coloneqq \prod_{i=1}^{k} p_i^{\left\lfloor \frac{n}{\log p_i} \right\rfloor}$$

- \blacktriangleright k has to be small for efficiency.
- ▶ If q has a factor greater that p_k , everything works.

Pollard's p-1 Algorithm

Pollard's p-1 Algorithm

Input: integer N Output: A non-trivial factor of N

1.
$$x \leftarrow \mathbb{Z}_N^*$$

2. $y \coloneqq (x^B - 1)\% N$
3. $p \coloneqq \gcd(y, N)$
4. If $p \notin \{1, N\}$ return p

$$B \coloneqq \prod_{i=1}^{k} p_i^{\left\lfloor \frac{n}{\log p_i} \right\rfloor}$$

The Main Idea behind Pollard's rho algorithm

▶ If we have $x, x' \in \mathbb{Z}_N^*$ with $x \equiv x' \pmod{p}$, then $x'' \coloneqq x - x'$ is a multiple of p.

- Find a collision. Randomly sample $x^{(1)}, x^{(2)}, ..., x^{(k)}$. In the argument of birthday paradox, we know that if $k \coloneqq O(\sqrt{p}) = O(N^{\frac{1}{4}})$, collision occurs with high probability.
 - Check all pairs $(i, j) \in [k]^2$? This is as bad as trial division!.
 - Recall how we find a collision of a hash function.

Theorem. Let $x_1, x_2, ..., x_q$ be a sequence of values with $x_{k+1} = H(x_k)$. If $x_i = x_j$ for some $(i, j) \in [q]^2$, then $\exists k \in [j - 1]$ s.t. $x_k = x_{2k}$.

Pollard's rho algorithm

Pollard's rho Algorithm

Input: N(product of two n-bit primes) Output: A non-trivial factor of N

1.
$$x \stackrel{\$}{\leftarrow} \mathbb{Z}_N^*, x' \coloneqq x$$

2. For $i = 1$ to $2^{n/2}$
 $\begin{vmatrix} x \coloneqq H(x) \\ x' \coloneqq H(H(x')) \\ p \coloneqq \gcd(x - x', N) \\ \text{If } p \notin \{1, N\} \text{ return } p$

- ► The 'hash function' H must satisfy $x \equiv x' \pmod{p} \Rightarrow H(x) = H(x').$
- ► A standard choice is $H(x) = (x^2 + 1)\%N$.
 - ▶ In fact, any polynomial will do.
- Each iteration takes only O(polylog(n)) time, and thus the total running time is $\tilde{O}\left(2^{\frac{n}{2}}\right) = \tilde{O}\left(N^{\frac{1}{4}}\right)$.
- ► It is space efficient.
- We can also use the same technique to solve discrete logarithm(see § 11.2.5).

Quadratic Sieve Algorithm A SUB-EXPONENTIAL ALGORITHM FOR FACTORING

The First Idea

- ▶ Given $x, y \in \mathbb{Z}^+$ with $x^2 \equiv y^2 \pmod{N}$ and, we can factor N as follows.
 - ► $x^2 y^2 = (x + y)(x y) \equiv 0 \pmod{N}$. That is, N|(x + y)(x y).
 - ▶ If $x \neq \pm y \pmod{N}$, we have $N \nmid (x + y)$ and $N \nmid (x y)$. Then gcd(x y, N) is a non-trivial factor of N.
- How to find such x, y?
 - ► A naive way: $x \stackrel{\$}{\leftarrow} \mathbb{Z}_N^*$, check if $q = x^2 \% N$ is a square. If $q = y^2$ for some $y \in \mathbb{Z}^+$, we have $x^2 \equiv y^2 \pmod{N}$.
 - ▶ e.g. N = 35, x = 12, $q = 12^2$ % $35 = 4 \rightarrow y = 2$.
 - ▶ Improvement: $x_1, x_2 ..., x_\ell \stackrel{\$}{\leftarrow} \mathbb{Z}_N^*$ and set $q_i \coloneqq x_i^2 \% N$. Next, try to find a subset $S \subseteq [\ell]$ such that $\prod_{i \in S} q_i$ is a square.

Smooth Numbers

• How to check whether $\prod_{i \in S} q_i$ is a square efficiently?

- ▶ How nice would It be if we can figure out the factoring of each q_i !
- ▶ **Definition.** Let $y \in \mathbb{R}^+$ and $m \in \mathbb{Z}^+$. We say that m is y-smooth if all prime divisors of m are at most y.

Fix some bound B, if we make sure every q_i is B-smooth, we can factor q_i easily.

Can we efficiently sample *B*-smooth numbers? This depends on the density
$$\rho(X,B) \coloneqq \frac{1}{X} |\{i \in \mathbb{Z}^+ : i < X \text{ and } i \text{ is } B \text{ smooth}\}|.$$

A General Plan for factoring

A General Plan for factoring

Input: N, B, ℓ Output: A non-trivial factor of N

1. $\delta \coloneqq 0$ 2. For i = 1 to ℓ $\begin{vmatrix} \text{Find } x_i \in \mathbb{Z}_N^* \text{ such that } q_i \coloneqq x_i^2 \% N \text{ is } B\text{-smooth} \\ (e_{i1}, \dots, e_{ik}) \leftarrow \text{Factor}(q_i) \end{vmatrix}$ 3. Find a subset $S \subseteq [\ell]$ such that $\sum_{i \in S} e_i \in 2\mathbb{Z}^k$ 4. $x \coloneqq \prod_{i \in S} x_i$ 5. $\beta_i \coloneqq \sum_{j \in S} e_{j,i}, y \coloneqq \prod_{i \in [k]} p_i^{\beta_i/2}$ 6. $p \coloneqq \gcd(x - y, N)$ 7. If $p \notin \{1, N\}$ return p

- Let $\{p_1, \dots, p_k\}$ be the primes $\leq B$.
- $\blacktriangleright q_i \coloneqq x^2 \% N = \prod_{j \in [k]} p_j^{e_{ij}}.$
- ► To ensure step 2 can succeed by Gaussian elimination, we must set $\ell \ge k + 1$.
- Next we need to:
 - Specify how to find x_i .
 - \blacktriangleright Choosing the optimal B.

Kraitchik's method

How to find x such that $q \coloneqq x^2 \% N$ is B-smooth? Intuition: small numbers are more likely to be B-smooth.

- ▶ Write $s := \lfloor \sqrt{N} \rfloor$. Consider the sequence $x_i := s + i$, $i \in [D]$.
- ▶ Let $q_i := x_i^2 \% N$. Note that q_i 's are not at all random, since $q_i \in Q\mathcal{R}_N$.
- Heuristically, the number of good q_i 's is roughly equal to $\rho(X, B) \cdot D$.
- Note that we require $\ell \ge k + 1 = \pi(B) + 1$, and hence we shall set $D \approx \frac{\pi(B)}{\rho(X,B)}$.
- If we factor each q_i by trial division, the running time is bounded by $O(D \cdot \pi(B)) = O\left(\frac{\pi(B)^2}{\rho(X,B)}\right)$.
- ► When $B \approx \exp(\frac{1}{2}\sqrt{\log X \log \log X})$, and the minimum value of $\frac{\pi(B)^2}{\rho(X,B)}$ is $\exp(2\sqrt{\log X \log \log X})$.
- X is about $n^{\frac{1}{2}+o(1)}$ here, and the running time is bounded by $\exp(\sqrt{2 \log N \log \log N})$.

The Quadratic Sieve: a practical improvement

We study the polynomial $F(X) \coloneqq (X + s)^2 - N$. How to identify *B*-smooth numbers in the sequence $F(1), F(2), \dots, F(D)$ more efficiently?

Set $v[j] \coloneqq F(j)$ for all $j \in [D]$ // do the following for each pFor i = 1, 2, ..., d: 1. $j \coloneqq r_i$ 2. While $j \le D$ do I. While p|v[j] do $v[j] \coloneqq v[j]/p$ 2. $j \coloneqq j + p$

- ► The idea of sieve: e.g. Sieve of Eratosthenes
- Assume that F has d distinct roots modulo p lying in the interval [1, p], call them r_1, \ldots, r_d .
- For each $j \in [D]$, if p|F(j), divide v[j] by p if possible. At the end, F(j) is B-smooth iff v[j] = 1.
- ▶ Note that $p|F(j) \Leftrightarrow j$ is a root of F(X) modulo $p \Leftrightarrow j \equiv r_k \pmod{p}$ for some $k \in [d]$.
- ▶ $r_1, ..., r_d$ can be calculated with an algorithm for computing modular square roots. (§ 12.5)
- Running time is improved to $\exp(\sqrt{\log N \log \log N})$.

15

Relating Factoring Assumption to RSA Assumption

Factoring Assumption

GenModulus Input: 1^n Output: (N, p, q) where N = pq and p, q are n-bit primes.

• **Definition.** Factoring is hard relative to GenModulus if for all PPT \mathcal{A} , $\Pr[\operatorname{Factor}_{\mathcal{A}}^{\operatorname{GenModulus}}(n) = 1] \leq negl(n)$.

Factoring assumption: there exists a GenModulus relative to which factoring is hard.

RSA Assumption

GenRSA Input: 1^n Output: (N, e, d) such that • N = pq and p, q are n-bit primes.

• e > 1 and $ed \equiv 1 \pmod{\varphi(N)}$.

▶ **Definition.** RSA problem is hard relative to GenRSA if for all PPT \mathcal{A} , $\Pr[RSA_{\mathcal{A}}^{GenRSA}(n) = 1] \le negl(n)$.

RSA assumption: there exists a GenRSA relative to which RSA problem is hard.

Relations between RSA Assumption and Factoring Assumption

- \blacktriangleright RSA assumption holds \rightarrow Factoring assumption holds
 - ▶ The other direction is still open.
- **Theorem.** Assuming that Factoring Assumption holds, then for all PPT algorithm \mathcal{A} ,

 $\Pr[\mathcal{A}(1^n, N, e) = d] = negl(n).$

- ► Note that $\varphi(N)|(ed 1)$.
- ▶ (§ 10.4) Given any nonzero multiple of $|\mathbb{Z}_N^*|$, one can efficiently factor N.

The Power of Quantum Computing

Shor's Algorithm: Reducing Factoring to Order Finding

FindOrder Input: $N, x \in \mathbb{Z}_N^*$ Output: ord(x) in \mathbb{Z}_N^*

- If we can find a non-trivial square root of 1, then we can factor N easily.
- FindOrder can be implemented efficiently by quantum computing devices.

Theorem. Let $N = \prod_{i=1}^{m} p_i^{e_i}$ be the factorization of a odd composite number N.Then

$$\Pr_{\substack{\$ \\ \leftarrow \mathbb{Z}_N^*}} \left[\operatorname{ord}(x) \text{ is even } \wedge x^{\frac{\operatorname{ord}(x)}{2}} \not\equiv -1 \pmod{N} \right] \ge 1 - \frac{1}{2^m}$$

Thanks for listening.