
Factoring
ALGORITHMS AND HARDNESS ASSUMPTIONS

1



Outline

 Algorithms for factoring (� = ��)

 Pollard’s � − 1 algorithm: it is effective if � − 1 has only small prime 
factors.  

 Pollard’s rho algorithm:  runs in �� �
�

� .

 Quadratic sieve algorithm(§15.3): runs in sub-exponential time, i.e., 

2�(��� �). [Based on A Tale of Two Sieves by Carl Pomerance]

 Connection between factoring assumption and RSA Assumption

 The power of quantum computing [A famous book: Quantum 
Computation and Quantum Information]

2



Simple Algorithms for Factoring

3



Preparation and Warm-up

 Assume that � = ��, where �, � are distinct primes.

 Usually, � and � each has the same length � = Θ log � .

 � 
$

←  � means choose � uniformly at random from the set �.

 ℤ�
∗ ≅ ℤ�

∗ × ℤ�
∗ by CRT, and we write � 

���
 ��, �� with ��  ≔ � % �, �� ≔

� % �, to denote the isomorphism.  

4



The Main Idea behind 
Pollard’s � − 1 Algorithm

 We want to find � ∈ ℕ such that ℤ�
∗ = � − 1 divides �. Then for � 

$
← ℤ�

∗ , we 
have 

��  − 1  
���

 ��, ��
�

− 1,1 = ��
�  − 1, ��

�  − 1 = 0, ��
�  − 1 .

 � ≔ ��  − 1 %� satisfies � ∣ �, � ∤ �(with high probability). 

 Then gcd �, � = �.

 How to find �?

 If � − 1 has no large factor, we set 

� ≔ � �
�

�
��� ��

�

���

.

 � has to be small for efficiency. 

 If � has a factor greater that ��, everything works.

5



Pollard’s � − 1 Algorithm 6

Pollard’s � − 1 Algorithm

Input:  integer �
Output:  A non-trivial factor of �

1. � 
$

← ℤ�
∗

2. � ≔ ��  − 1 % �
3. � ≔ gcd �, �
4. If � ∉ {1, �} return �

� ≔ � �
�

�
��� ��

�

���



The Main Idea behind Pollard’s rho 
algorithm

 If we have �, �� ∈ ℤ�
∗  with � ≡ �� (��� �), then ��� ≔ � − �′ is a multiple of �.

 Find a collision. Randomly sample �(�), �(�), … , � � . In the argument of 

birthday paradox, we know that if � ≔ � � = � �
�

� , collision occurs with 

high probability. 

 Check all pairs �, � ∈ � �? This is as bad as trial division!.

 Recall how we find a collision of a hash function.

7

��, ��, … , �� ���� = � �� . �� = ��

�, � ∈ � � ∃ � ∈ [� − 1] �� = ���.

Theorem. Let ��, ��, … , �� be a sequence of values with ���� = � �� . If �� = ��

for some �, � ∈ � �, then ∃ � ∈ [� − 1] s.t. �� = ���.



Pollard’s rho algorithm

 The ‘hash function’ � must satisfy 
� ≡ �� ��� � ⇒ � � = � �� .

 A standard choice is � � = �� + 1 %�.

 In fact, any polynomial will do.

 Each iteration takes only �(polylog(�)) time, 

and thus the total running time is �� 2
�

� =

�� �
�

� .

 It is space efficient. 

 We can also use the same technique to solve 
discrete logarithm(see §11.2.5). 

8

Pollard’s rho Algorithm

Input:  �(product of two �-bit primes )  
Output:  A non-trivial factor of �

1. �
$

← ℤ�
∗ , �′ ≔ �

2. For � = 1 to 2�/�

│ � ≔ �(�)
│ �� ≔ �(�(�′))
│ � ≔ gcd � − �′, �
│ If � ∉ {1, �} return �



Quadratic Sieve Algorithm 
A SUB-EXPONENTIAL ALGORITHM FOR FACTORING

9



The First Idea

 Given �, � ∈ ℤ� with �� ≡ �� ��� �  and, we can factor � as follows. 

 ��  − �� = � + � � − � ≡ 0 (��� �). That is, �| � + � � − � . 

 If � ≢  ±� ��� � , we have  � ∤ � + �  and � ∤ � − � .Then gcd(� − �, �) is a 
non-trivial factor of �.

 How to find such �, � ?

 A naive way:  � 
$

← ℤ�
∗ , check if � = �� % � is a square. If � = �� for some � ∈ ℤ�, we 

have �� ≡ �� ��� �  .

 e.g. � = 35, � = 12, � = 12� % 35 = 4 → � = 2.

 Improvement: ��, �� … , �ℓ

$
← ℤ�

∗ and set ��  ≔ ��
� % �. Next, try to find a  subset � ⊆

[ℓ] such that ∏ ���∈� is a square.  

10



Smooth Numbers

 How to check whether ∏ ���∈� is a square efficiently? 

 How nice would It be if we can figure out the factoring of each �� !

 Definition. Let � ∈ ℝ� and � ∈ ℤ�. We say that � is �-smooth if all prime 
divisors of � are at most �.

 Fix some bound �, if we make sure every �� is �-smooth, we can factor �� easily. 

 Can we efficiently sample �-smooth numbers? This depends on the density

� �, �  ≔
1

�
� ∈ ℤ� ∶ � < � and � is � smooth .

11



A General Plan for factoring

 Let {��, … , ��} be the primes ≤ �.

 �� ≔ �� % � =  ∏ �
�

���

�∈ � .

 To ensure step 2 can succeed by 
Gaussian elimination, we must set ℓ ≥
 � + 1.

 Next we need to:

 Specify how to find ��.

 Choosing the optimal �.

12

A General Plan for factoring
Input:  �, �, ℓ
Output:  A non-trivial factor of �

1. � ≔ 0
2. For � = 1 to ℓ

│ Find �� ∈ ℤ�
∗ such that �� ≔ ��

� % � is �-smooth
│ ���, … , ��� ← Factor(��)  

3. Find a subset � ⊆ ℓ  such that ∑ ���∈� ∈ 2ℤ�

4. � ≔  ∏ ���∈�

5. ��  ≔  ∑  ��,�� ∈�
 ,  � ≔  ∏ ��

��/�
�∈ �

6. � ≔ gcd � − �, �
7. If � ∉ {1, �} return �



Kraitchik’s method

 Write � ≔  ⌊ �⌋. Consider the sequence �� ≔ � + �, � ∈ [�].

 Let ��  ≔ ��
� % �. Note that ��’s are not at all random, since �� ∈ �ℛ�.

 Heuristically, the number of good ��’s is roughly equal to � �, � ⋅ �.

 Note that we require ℓ ≥ � + 1 = � � + 1, and hence we shall set � ≈
� �

� �,�
.

 If we factor each �� by trial division, the running time is bounded by O � ⋅ � � =

 O
� � �

� �,�
. 

 When � ≈ exp(
�

�
log � log log �), and the minimum value of 

� � �

� �,�
is 

exp(2 log � log log �).

 � is about �
�

�
��(�) here, and the running time is bounded by exp 2 log � log log � .

13

How to find � such that � ≔ �� % � is �-smooth? 
Intuition: small numbers are more likely to be �-smooth.



The Quadratic Sieve: a practical 
improvement

 The idea of sieve: e.g. Sieve of Eratosthenes

 Assume that � has � distinct roots modulo � lying in the 
interval 1, � , call them ��, . . . , �� .

 For each  � ∈ [�], if �|� � , divide �[�] by � if possible. At the 
end, �(�) is �-smooth iff � � = 1.

 Note that �|� � ⇔ � is a root of �(�) modulo � ⇔ � ≡
�� (��� �) for some � ∈ [�].

 ��, . . . , �� can be calculated with an algorithm for computing 
modular square roots. (§12.5)

 Running time is improved to  exp log � log log � .

14

Set � � ≔ �(�) for all � ∈ [�]
// do the following for each �
For � = 1,2, … , � :

1. � ≔ ��

2. While � ≤ � do 
1. While �|� � do

� � ≔ �[�]/�
2.  � ≔ � + �

We study the polynomial � � ≔ � + � �  − �.
How to identify �-smooth numbers in the sequence � 1 , � 2 , … , �(�) more efficiently?



Relating Factoring Assumption to RSA 
Assumption

15



Factoring Assumption

 Definition. Factoring is hard relative to GenModulus if for all PPT �, 

Pr Factor�
���������� � = 1 ≤ ����(�) .

 Factoring assumption: there exists a GenModulus relative to which factoring is 
hard.

16

GenModulus
Input:  1�

Output:  (�, �, �) where � = �� and 
�, � are �-bit primes.

��

�, �, � ← GenModulus(1�)
�

��, �′

If ���� = � output 1;
Otherwise output 0.

Compute 
��, �′

The experiment Factor�
����������(�)



RSA Assumption

 Definition. RSA problem is hard relative to GenRSA  if for all PPT �, 

Pr RSA�
������ � = 1 ≤ ����(�) .

 RSA assumption: there exists a GenRSA relative to which RSA problem is hard.

17

GenRSA
Input:  1�

Output:  �, �, � such that 
• � = �� and �, � are �−bit primes.

• � > 1 and �� ≡ 1 ��� � � .

��

�, �, � ← GenRSA(1�)
(�, �, �)

�

If �� = � output 1;
Otherwise output 0.

Compute �

The experiment  RSA�
������(�)

� 
$

← ℤ�
∗



Relations between RSA Assumption and 
Factoring Assumption

 RSA assumption  holds   Factoring assumption holds 

 The other direction is still open.

 Theorem. Assuming that Factoring Assumption holds, then for all PPT algorithm �, 

Pr � 1�, �, � = � = ����(�) .

 Note that � � | �� − 1 .

 (§10.4) Given any nonzero multiple of |ℤ�
∗ | , one can efficiently factor �.

18



The Power of Quantum Computing

19



Shor’s Algorithm: Reducing Factoring to 
Order Finding

 If we can find a non-trivial square root of 1, then we can 
factor � easily. 

 FindOrder can be implemented efficiently by quantum 
computing devices.

20

FindOrder
Input: �, � ∈ ℤ�

∗

Output: ord �  in ℤ�
∗

� = ∏ ��
���

���

�

Pr
� ← ℤ�

∗

ord �  is even ∧ � ≢ −1 ��� � ≥ 1 −
2�

Theorem. Let � = ∏ ��
���

��� be the factorization of a odd composite number  

�. Then 

Pr
� 

$
← ℤ�

∗

ord �  is even ∧ �
��� �

� ≢ −1 ��� � ≥ 1 −
1

2�



Thanks for listening.

21


