Factoring

ALGORITHMS AND HARDNESS ASSUMPTIONS

Outline

- Algorithms for factoring ($N=p q$)
- Pollard's $p-1$ algorithm: it is effective if $p-1$ has only small prime factors.
- Pollard's rho algorithm: runs in $\tilde{O}\left(N^{\frac{1}{4}}\right)$.
> Quadratic sieve algorithm(§ I5.3): runs in sub-exponential time, i.e., $2^{o(\log N)}$. [Based on A Tale of Two Sieves by Carl Pomerance]
- Connection between factoring assumption and RSA Assumption
- The power of quantum computing [A famous book: Quantum Computation and Quantum Information]

Simple Algorithms for Factoring

Preparation and Warm-up

- Assume that $N=p q$, where p, q are distinct primes.
> Usually, p and q each has the same length $n=\Theta(\log N)$.
$x \stackrel{\$}{\leftarrow}$ means choose x uniformly at random from the set S.
$>\mathbb{Z}_{N}^{*} \cong \mathbb{Z}_{p}^{*} \times \mathbb{Z}_{q}^{*}$ by CRT, and we write $x \stackrel{\text { CRT }}{\longleftrightarrow}\left(x_{p}, x_{q}\right)$ with $x_{p}:=x \% p, x_{q}:=$ $x \% q$, to denote the isomorphism.

The Main Idea behind Pollard's $p-1$ Algorithm

$>$ We want to find $B \in \mathbb{N}$ such that $\left|\mathbb{Z}_{p}^{*}\right|=p-1$ divides B. Then for $x \stackrel{\$}{\leftarrow} \mathbb{Z}_{N}^{*}$, we have

$$
\left(x^{B}-1\right) \stackrel{\text { CRT }}{\longleftrightarrow}\left(x_{p}, x_{q}\right)^{B}-(1,1)=\left(x_{p}^{B}-1, x_{q}^{B}-1\right)=\left(0, x_{q}^{B}-1\right) .
$$

- $y:=\left(x^{B}-1\right) \% N$ satisfies $p \mid y, q \nmid y$ (with high probability).
- Then $\operatorname{gcd}(y, N)=p$.
$>$ How to find B ?
- If $p-1$ has no large factor, we set

$$
B:=\prod_{i=1}^{k} p_{i}^{\left\lfloor\frac{n}{\log p_{i}}\right\rfloor} .
$$

- k has to be small for efficiency.

If q has a factor greater that p_{k}, everything works.

Pollard's $p-1$ Algorithm

Pollard's $p-1$ Algorithm
Input: integer N
Output: A non-trivial factor of N

1. $x \stackrel{\$}{\leftarrow} \mathbb{Z}_{N}^{*}$
2. $y:=\left(x^{B}-1\right) \% N$
3. $p:=\operatorname{gcd}(y, N)$

$$
B:=\prod_{i=1}^{k} p_{i}^{\left\lfloor\frac{n}{\log p_{i}}\right\rfloor}
$$

4. If $p \notin\{1, N\}$ return p

The Main Idea behind Pollard's rho algorithm

$>$ If we have $x, x^{\prime} \in \mathbb{Z}_{N}^{*}$ with $x \equiv x^{\prime}(\bmod p)$, then $x^{\prime \prime}:=x-x^{\prime}$ is a multiple of p.
\rightarrow Find a collision. Randomly sample $x^{(1)}, x^{(2)}, \ldots, x^{(k)}$. In the argument of birthday paradox, we know that if $k:=O(\sqrt{p})=O\left(N^{\frac{1}{4}}\right)$, collision occurs with high probability.
> Check all pairs $(i, j) \in[k]^{2}$? This is as bad as trial division!.

- Recall how we find a collision of a hash function.

Theorem. Let $x_{1}, x_{2}, \ldots, x_{q}$ be a sequence of values with $x_{k+1}=H\left(x_{k}\right)$. If $x_{i}=x_{j}$ for some $(i, j) \in[q]^{2}$, then $\exists k \in[j-1]$ s.t. $x_{k}=x_{2 k}$.

Pollard's rho algorithm

Pollard's rho Algorithm
Input: N (product of two n-bit primes)
Output: A non-trivial factor of N

1. $x \leftarrow \mathbb{Z}_{N}^{*}, x^{\prime}:=x$
2. For $i=1$ to $2^{n / 2}$
$x:=H(x)$
$x^{\prime}:=H\left(H\left(x^{\prime}\right)\right)$
$p:=\operatorname{gcd}\left(x-x^{\prime}, N\right)$
If $p \notin\{1, N\}$ return p
> The 'hash function' H must satisfy

$$
x \equiv x^{\prime}(\bmod p) \Rightarrow H(x)=H\left(x^{\prime}\right)
$$

- A standard choice is $H(x)=\left(x^{2}+1\right) \% N$.
- In fact, any polynomial will do.
- Each iteration takes only $O(\operatorname{polylog}(n))$ time, and thus the total running time is $\tilde{O}\left(2^{\frac{n}{2}}\right)=$ $\widetilde{O}\left(N^{\frac{1}{4}}\right)$.
$>$ It is space efficient.
- We can also use the same technique to solve discrete logarithm(see § I I.2.5).

Quadratic Sieve Algorithm

A SUB-EXPONENTIAL ALGORITHM FOR FACTORING

The First Idea

- Given $x, y \in \mathbb{Z}^{+}$with $x^{2} \equiv y^{2}(\bmod N)$ and, we can factor N as follows.
- $x^{2}-y^{2}=(x+y)(x-y) \equiv 0(\bmod N)$. That is, $N \mid(x+y)(x-y)$.
- If $x \not \equiv \pm y(\bmod N)$, we have $N \nmid(x+y)$ and $N \nmid(x-y)$. Then $\operatorname{gcd}(x-y, N)$ is a non-trivial factor of N.
How to find such x, y ?
- A naive way: $x \stackrel{\$}{\leftarrow} \mathbb{Z}_{N}^{*}$, check if $q=x^{2} \% N$ is a square. If $q=y^{2}$ for some $y \in \mathbb{Z}^{+}$, we have $x^{2} \equiv y^{2}(\bmod N)$.
$>$ e.g. $N=35, x=12, q=12^{2} \% 35=4 \rightarrow y=2$.
- Improvement: $x_{1}, x_{2} \ldots, x_{\ell}{ }_{\natural}^{\S} \mathbb{Z}_{N}^{*}$ and set $q_{i}:=x_{i}^{2} \% N$. Next, try to find a subset $S \subseteq$ $[\ell]$ such that $\prod_{i \in S} q_{i}$ is a square.

Smooth Numbers

- How to check whether $\prod_{i \in S} q_{i}$ is a square efficiently?
$>$ How nice would It be if we can figure out the factoring of each q_{i} !
$>$ Definition. Let $y \in \mathbb{R}^{+}$and $m \in \mathbb{Z}^{+}$. We say that m is y-smooth if all prime divisors of m are at most y.
- Fix some bound B, if we make sure every q_{i} is B-smooth, we can factor q_{i} easily.
- Can we efficiently sample B-smooth numbers? This depends on the density

$$
\rho(X, B): \left.\left.=\frac{1}{X} \right\rvert\,\left\{i \in \mathbb{Z}^{+}: i<X \text { and } i \text { is } B \text { smooth }\right\} \right\rvert\, \text {. }
$$

A General Plan for factoring

$>$ Let $\left\{p_{1}, \ldots, p_{k}\right\}$ be the primes $\leq B$.
A General Plan for factoring
Input: N, B, ℓ
Output: A non-trivial factor of N

1. $\delta:=0$
2. For $i=1$ to ℓ

Find $x_{i} \in \mathbb{Z}_{N}^{*}$ such that $q_{i}:=x_{i}^{2} \% N$ is B-smooth $\left(e_{i 1}, \ldots, e_{i k}\right) \leftarrow \operatorname{Factor}\left(q_{i}\right)$
3. Find a subset $S \subseteq[\ell]$ such that $\sum_{i \in S} \boldsymbol{e}_{i} \in 2 \mathbb{Z}^{k}$
4. $x:=\prod_{i \in S} x_{i}$
5. $\beta_{i}:=\sum_{j \in S} e_{j, i}, \quad y:=\prod_{i \in[k]} p_{i}^{\beta_{i} / 2}$
6. $p:=\operatorname{gcd}(x-y, N)$
7. If $p \notin\{1, N\}$ return p

- To ensure step 2 can succeed by Gaussian elimination, we must set $\ell \geq$ $k+1$.
$>$ Next we need to:
$>$ Specify how to find x_{i}.
- Choosing the optimal B.

Kraitchik's method

How to find x such that $q:=x^{2} \% N$ is B-smooth? Intuition: small numbers are more likely to be B-smooth.

- Write $s:=\lfloor\sqrt{N}\rfloor$. Consider the sequence $x_{i}:=s+i, i \in[D]$.
\triangleright Let $q_{i}:=x_{i}^{2} \% N$. Note that q_{i}^{\prime} s are not at all random, since $q_{i} \in Q \mathcal{R}_{N}$.
- Heuristically, the number of good q_{i} 's is roughly equal to $\rho(X, B) \cdot D$.
- Note that we require $l \geq k+1=\pi(B)+1$, and hence we shall set $D \approx \frac{\pi(B)}{\rho(X, B)}$.
- If we factor each q_{i} by trial division, the running time is bounded by $\mathrm{O}(D \cdot \pi(B))=$ $0\left(\frac{\pi(B)^{2}}{\rho(X, B)}\right)$.
When $B \approx \exp \left(\frac{1}{2} \sqrt{\log X \log \log X}\right)$, and the minimum value of $\frac{\pi(B)^{2}}{\rho(X, B)}$ is $\exp (2 \sqrt{\log X \log \log X})$.
v is about $n^{\frac{1}{2}+o(1)}$ here, and the running time is bounded by $\exp (\sqrt{2 \log N \log \log N})$.

The Quadratic Sieve: a practical improvement

We study the polynomial $F(X):=(X+s)^{2}-N$. How to identify B-smooth numbers in the sequence $F(1), F(2), \ldots, F(D)$ more efficiently?

```
Set v[j]:= F(j) for all j }\in[D
// do the following for each p
For }i=1,2,\ldots,d
    1. j := r }\mp@subsup{r}{i}{
    2. While j\leqD do
        I. While p|v[j] do
        v[j]:=v[j]/p
            2. }j:=j+
```

- The idea of sieve: e.g. Sieve of Eratosthenes
- Assume that F has d distinct roots modulo p lying in the interval $[1, p]$, call them r_{1}, \ldots, r_{d}.
\checkmark For each $j \in[D]$, if $p \mid F(j)$, divide $v[j]$ by p if possible. At the end, $F(j)$ is B-smooth iff $v[j]=1$.
$>$ Note that $p \mid F(j) \Leftrightarrow j$ is a root of $F(X)$ modulo $p \Leftrightarrow j \equiv$ $r_{k}(\bmod p)$ for some $k \in[d]$.
$>r_{1}, \ldots, r_{d}$ can be calculated with an algorithm for computing modular square roots. (§ I2.5)
Running time is improved to $\exp (\sqrt{\log N \log \log N})$.

Relating Factoring Assumption to RSA Assumption

Factoring Assumption

GenModulus

Input: 1^{n}
Output: (N, p, q) where $N=p q$ and p, q are n-bit primes.

- Definition. Factoring is hard relative to GenModulus if for all PPT \mathcal{A},

$$
\operatorname{Pr}\left[\operatorname{Factor}_{\mathcal{A}}^{G e n M o d u l u s}(n)=1\right] \leq \operatorname{negl}(n) .
$$

- Factoring assumption: there exists a GenModulus relative to which factoring is hard.

RSA Assumption

GenRSA

Input: 1^{n}
Output: (N, e, d) such that

- $N=p q$ and p, q are n-bit primes.
- $e>1$ and $e d \equiv 1(\bmod \varphi(N))$.

c		${ }_{\mathcal{A}}$
$\begin{aligned} (N, e, d) & \leftarrow \operatorname{GenRSA}\left(1^{n}\right) \\ y & \$ \mathbb{Z}_{N}^{*} \end{aligned}$	(N, e, y) x	Compute x
If $x^{e}=y$ output 1 ; Otherwise output 0 .		
The experiment $\mathrm{RSA}_{\mathcal{A}}^{\mathrm{GenRSA}}(n)$		

Definition. RSA problem is hard relative to GenRSA if for all PPT \mathcal{A},

$$
\operatorname{Pr}\left[\operatorname{RSA}_{\mathcal{A}}^{\operatorname{GenRSA}}(n)=1\right] \leq \operatorname{negl}(n) .
$$

- RSA assumption: there exists a GenRSA relative to which RSA problem is hard.

Relations between RSA Assumption and Factoring Assumption

$>$ RSA assumption holds \rightarrow Factoring assumption holds
> The other direction is still open.

- Theorem. Assuming that Factoring Assumption holds, then for all PPT algorithm \mathcal{A},

$$
\operatorname{Pr}\left[\mathcal{A}\left(1^{n}, N, e\right)=d\right]=\operatorname{negl}(n) .
$$

$>$ Note that $\varphi(N) \mid(e d-1)$.
$>(\S 10.4)$ Given any nonzero multiple of $\left|\mathbb{Z}_{N}^{*}\right|$, one can efficiently factor N.

The Power of Quantum Computing

Shor's Algorithm: Reducing Factoring to Order Finding

FindOrder
Input: $N, x \in \mathbb{Z}_{N}^{*}$
Output: $\operatorname{ord}(x)$ in \mathbb{Z}_{N}^{*}

- If we can find a non-trivial square root of 1 , then we can factor N easily.
- FindOrder can be implemented efficiently by quantum computing devices.

Theorem. Let $N=\prod_{i=1}^{m} p_{i}^{e_{i}}$ be the factorization of a odd composite number N.Then

$$
\operatorname{Pr}_{\substack{\S \\ x \lessgtr \mathbb{Z}_{N}^{*}}}\left[\operatorname{ord}(x) \text { is even } \wedge x^{\frac{\operatorname{ord}(x)}{2}} \not \equiv-1(\bmod N)\right] \geq 1-\frac{1}{2^{m}}
$$

Thanks for listening.()

