Probe into Markov Chain by Counting Spanning Trees/Forests

Xinyu Mao
Instructor: Yaokun Wu
January 2, 2021

Summary

In this note, I shall present two results that reveals the connection between (irreducible) Markov chains and counting spanning trees/forests. One is a classical result, known as Markov Chain Tree Theorem (theorem 1), the other (theorem 2) is taken from [1], which shows Kemeny’s constant can be expressed by the number of spanning forests. Spanning trees/forests are mainly combinatorial objects, while Markov chains are usually investigated in the context of probability theory, and thus such connections are often insightful and interesting.

Acknowledgement

I would like to warmly thank Prof. Wu for his intriguing lecture on Graph and Networks during 2020 Fall. This note is also an extension of topics discussed during the lecture 1.

1 Introduction

Let X be a irreducible Markov chain with finite state space \mathcal{V} and transition matrix P. Let \mathcal{A}_v be the set of rooted spanning rooted trees on \mathcal{V} with root $v \in \mathcal{V}$. Write $\mathcal{A} := \bigcup_{v \in \mathcal{V}} \mathcal{A}_v$, i.e., \mathcal{A} is the set of all rooted spanning trees on \mathcal{V}.

1A relevant material:
http://math.sjtu.edu.cn/faculty/ykwu/data/TeachingMaterial/MCT.pdf
We associate to each tree \(T \in \mathcal{A} \) a weight via
\[
w_p(T) := \prod_{(u,v) \in T} P(u,v),
\]
where \((u,v)\) runs over directed edges in \(T \) that goes towards the root. See fig. 1 for an example.

![Diagram](image)

Figure 1: \(w_p(T) = P(u,u)P(x,u)P(y,z)P(z,x) \). All arcs are oriented toward root.

Let
\[
\Sigma_v := \sum_{T \in \mathcal{A}_v} w_p(T) \quad \text{and} \quad \Sigma^{(1)} := \sum_{v \in V} \Sigma_v.
\]

In section 2, we shall prove

Theorem 1 (Markov chain tree theorem). Let \(\pi \in \mathbb{R}^V \) with \(\pi(v) := \Sigma_v / \Sigma^{(1)} \). Then \(\pi \) is the unique stationary distribution of \(X \).

We can generalize the weight function to a spanning forest of \(V \). Let \((T_1, T_2, \ldots, T_r)\) be a spanning forest of \(V \) with \(r \) rooted trees. Define
\[
w_p(T_1, T_2, \ldots, T_r) := \prod_{i=1}^r w_p(T_i).
\]

Analogously, write
\[
\Sigma^{(r)} := \sum_{(T_1, T_2, \ldots, T_r)} w_p(T_1, T_2, \ldots, T_r),
\]
where the sum is over all spanning forests consists of \(r \) rooted trees. In section 3, we shall prove that

Theorem 2. Let \(\kappa \) be the Kemeny’s constant of irreducible Markov chain \(X \). Then
\[
\kappa = 1 + \frac{\Sigma^{(2)}}{\Sigma^{(1)}}.
\]
2 Lifting the Markov chain to the spanning tree space

We shall present a natural way to 'lift' X to a Markov chains with state space A, denoted by \hat{X}. Then we can prove theorem 1 by looking into the properties of \hat{X}. We first introduce projection of a Markov chain.

Projection of a Markov Chain. Let $X := (X_t)_{t \in \mathbb{N}}$ be a Markov Chain with state space X and transition matrix Q. Suppose that $f : X \to Y$ is a surjective map such that for all $y \in Y$,

$$f(x_1) = f(x_2) \implies \sum_{x \in f^{-1}(y)} Q(x_1, x) = \sum_{x \in f^{-1}(y)} Q(x_2, x).$$

(1)

Define a matrix $Q' \in \mathbb{R}^{Y \times Y}$ by

$$Q'(y_1, y_2) := \sum_{x_2 \in f^{-1}(y_2)} Q(x_1, x_2),$$

(2)

where x_1 is any preimage of y_1, i.e., $x_1 \in f^{-1}(y_1)$. Note that Q' is well-defined given that eq. (1) is satisfied. Let $Y_t := f(X_t)$. It is easy to check that $Y := (Y_t)_{t \in \mathbb{N}}$ is a Markov Chain with state space Y and transition matrix Q'. We say Y is a projection of X.

Intuitively, we expect that some properties of the original chain X can also be 'projected' to the projection chain Y. Indeed, stationary distribution is such an example:

Proposition 3. Let Y be a projection of X. If $\pi \in \mathbb{R}^X$ is a stationary distribution for X, then

$$\mu(y) := \sum_{x \in f^{-1}(y)} \pi(x)$$

is a stationary distribution for Y.

Now we 'lift' X to a Markov Chain \hat{X} with state space \mathcal{A} and transition matrix \hat{P}, where \hat{P} is defined as follows. Let $v \in V, T \in \mathcal{A}$, say, $T \in \mathcal{A}_u$. We obtain a new tree T', rooted at v, by adding the edge (u, v) to T and deleting the only out edge of v in T(see fig. 2). Then one simply set $\hat{P}(T, T') := P(u, v)$. If $T'' \in \mathcal{A}$ cannot be obtain from T in this way, set $\hat{P}(T, T'') = 0$.

Consider the mapping $\text{root} : \mathcal{A} \to V$ that maps T to its root, that is, $\text{root}(T) := v$ for every $T \in \mathcal{A}_v$. We claim that X is a projection of \hat{X}, and
the projection mapping is root. Indeed, since the transition of \hat{X} depends only on root(X_t), it is easy to verify eq. (1) and eq. (2) holds.

Now we turn to the proof of theorem 1.

Proof of theorem 1. \hat{X} is also irreducible for we assume that X is irreducible. For $T \in \mathcal{A}$, let $\pi(T) := w_p(T)/\Sigma^{(1)}$. We claim that

Proposition 4. π is the unique stationary distribution for \hat{X}.

Proof. For any $T \in \mathcal{A}$, say $T \in \mathcal{A}_u$, we are to verify

$$\sum_{S \in \mathcal{A}} w_p(S) \hat{P}(S, T) = w_p(T).$$

Let v_1, v_2, \ldots, v_ℓ be the neighbors of u in T. For $i \in [\ell]$, Define

$$V_i := \{v \in \mathcal{V} : \text{there exists a path from } v \text{ to } v_i\}.$$

Note that if $\hat{P}(S, T) > 0$ and $S \neq T$, we have $S \in \mathcal{A}_{v_i}$ for some $i \in [\ell]$. Hence,

$$\sum_{S \in \mathcal{A}} w_p(S) \hat{P}(S, T) = w(T) \hat{P}(T, T) + \sum_{i=1}^{\ell} \sum_{S \in \mathcal{A}_{v_i}} w(S) \hat{P}(S, T) \quad (3)$$

For $S \in \mathcal{A}_{v_i}$, let $S = T - (v_i, u) + (u, x)$, where $x \in V_i$ is the predecessor of u in S, i.e., $(u, x) \in S$ (see fig. 3). Clearly, $w(S) \hat{P}(S, T) = w(S) P(v_i, u) = w(T) P(u, x)$ and $\hat{P}(T, T) = P(u, u)$. We point out that $S \mapsto x$ is a one-to-one correspondence. Therefore, together with eq. (3), we get
Figure 3: Tree S plus (v, u) equals tree T plus (u, x).

$$\sum_{S \in A} w_P(S) \hat{P}(S, T) = w_T P(u, u) + \sum_{i=1}^\ell \sum_{x \in V_i} w_T P(u, x)$$

which is exactly what we set out to prove. \hfill \Box

We are happy to see that theorem 1 simply follows from proposition 4 and proposition 3. \hfill \Box

3 Kemeny’s constant and counting spanning forests

As usual, we study an irreducible Markov Chain with state space X and stationary distribution π. For $x \in X$, let τ_x be the hitting time of x.

3.1 Random walk with random Target

We are now interested in the quantity (for $a \in X$):

$$\kappa(a) := E_a [\tau_x] := \sum_{b \in X} E_a [\tau_b] \cdot \pi(b).$$
This quantity is the expected time of hitting a random target with distribution π.

Lemma 5 (Random Target Lemma). *The quantity $\kappa(a)$ does not depend on $a \in X$.***

Proof. It suffices to show that κ is harmonic. Note that

$$(P\kappa)(a) = E_a[\kappa(X_1)] = \sum_{x \in X} \kappa(x) P(a, x) = \sum_{x \in X} \sum_{b \in X} \pi(b) E_x[\tau_b] P(a, x). \quad (4)$$

If $b \neq a$,
$$\sum_{x \in X} E_x[\tau_b] P(a, x) = E_a[\tau_b] - 1;$$
if $b = a$,
$$\sum_{x \in X} E_x[\tau_b] P(a, x) = E_a[\tau_a^+] - 1 = \frac{1}{\pi(a)} - 1.$$

Hence, we rearrange eq. (4) as

$$(P\kappa)(a) = \sum_{b \in X} \pi(b) \left[\sum_{x \in X} E_x[\tau_b] P(a, x) \right]$$
$$= \sum_{b \in X \setminus \{a\}} \pi(b) (E_a[\tau_b] - 1) + \pi(a) \left(\frac{1}{\pi(a)} - 1 \right)$$
$$= \sum_{b \in X} \pi(b) (E_a[\tau_b] - 1) + 1 \quad \text{(since $E_a[\tau_a] = 0$)}$$
$$= \kappa(a).$$

This finishes the proof. \hfill \Box

According to the lemma above, the starting measure is of no significance for the quantity $\kappa(\cdot)$. Hence, we can define the target time of an irreducible chain by $\kappa := \kappa(a)$, where $a \in X$ is arbitrary. Or equivalently,

$$\kappa := E_\pi[\tau_\pi] := \sum_{a, b \in X} E_a[\tau_b] \pi(a) \pi(b).$$

Intuitively, κ is the expected time of going to a random target from a random starting location. Thus, we deem that κ measure the connectivity of the network to some degree. κ is also known as **Kemeny’s constant.**
3.2 Relating Kemeny’s constant and spanning forests

For simplicity, write $m(u, v) := E_u[\tau_v]$ for every $(u, v) \in \mathcal{V} \times \mathcal{V}$. For $T \in \mathcal{A}_v$, let $\text{last}(T, u)$ be the last vertex before v in the path from u to v in T, as is shown in fig. 4.

![Diagram of last(T, u)](image)

Figure 4: Definition of $\text{last}(T, u)$.

In order to prove theorem 2, we draw on the following theorem without presenting a proof.

Theorem 6 (Markov chain tree formula for mean hitting times [1]). Let P be a transition matrix for an irreducible chain. For each $u \neq v$,

$$m(u, v) = \frac{\Sigma_{uv}}{\Sigma_v},$$

where

$$\Sigma_{uv} := \sum_{T \in \mathcal{A}_v} \frac{w_p(T)}{P(\text{last}(T, u), v)}.$$

Now we are ready to prove theorem 2.

Proof of theorem 2. By omitting the arc $(\text{last}(T, u), v)$ in T, we get a spanning forest (T_1, T_2) from T, where T_1 is the subtree with root $\text{last}(T, u)$, $T_2 = T \setminus T_1$. The map $T \mapsto (T_1, T_2)$ is a bijection from \mathcal{A}_v to the spanning forests

$$\mathcal{F}_{uv} := \{(T_1, T_2) : u \in T_1 \text{ and } \text{root}(T_2) = v\}.$$

Note that $w_p(T)/P(\text{last}(T, u), v) = w_p(T_1, T_2)$, and thus

$$\Sigma_{uv} = \sum_{(T_1, T_2) \in \mathcal{F}_{uv}} w_p(T_1, T_2).$$
Observe that for fixed u, $\{\mathcal{F}_{uv} : v \in \mathcal{X} \setminus \{u\}\}$ form a partition of all 2-component spanning forests. Hence,

$$\Sigma^{(2)} = \sum_{v \in \mathcal{X} \setminus \{u\}} \Sigma_{uv}. \quad (5)$$

Since $m(u, u) = \frac{1}{\pi(u)}$, by theorem 6 we have

$$\kappa = 1 + \sum_{v \in \mathcal{X} \setminus \{u\}} \pi(b)m(u, v) = 1 + \sum_{v \in \mathcal{X} \setminus \{u\}} \pi(v) \frac{\Sigma_{uv}}{\Sigma_v}. \quad (6)$$

According to theorem 1, $\pi(v) = \Sigma_v / \Sigma^{(1)}$. Plugging this into eq. (6) yields

$$\kappa = 1 + \sum_{v \in \mathcal{X} \setminus \{u\}} \frac{\Sigma_{uv}}{\Sigma^{(1)}} = 1 + \frac{\Sigma^{(2)}}{\Sigma^{(1)}},$$

where the last step follows from eq. (5). \qed

References