Probe into Markov Chain by Counting Spanning Trees/Forests

Xinyu Mao Instructor: Yaokun Wu

January 2, 2021

Summary

In this note, I shall present two results that reveals the connection between (irreducible) Markov chains and counting spanning trees/forests. One is a classical result, known as Markov Chain Tree Theorem(theorem 1), the other(theorem 2) is taken from [1], which shows Kemeny's constant can be expressed by the number of spanning forests. Spanning trees/forests are mainly combinatorial objects, while Markov chains are usually investigated in the context of probability theory, and thus such connections are often insightful and interesting.

Acknowledgement I would like to warmly thank Prof. Wu for his intriguing lecture on Graph and Networks during 2020 Fall. This note is also an extension of topics discussed during the lecture ¹.

1 Introduction

Let *X* be a irreducible Markov chain with finite state space \mathcal{V} and transition matrix *P*. Let \mathcal{A}_v be the set of *rooted spanning rooted trees* on \mathcal{V} with root $v \in \mathcal{V}$. Write $\mathcal{A} := \bigcup_{v \in \mathcal{V}} \mathcal{A}_v$, i.e., \mathcal{A} is the set of all rooted spanning trees on \mathcal{V} .

¹A relevant material:

http://math.sjtu.edu.cn/faculty/ykwu/data/TeachingMaterial/MCT.pdf

We associate to each tree $T \in \mathcal{A}$ a weight via

$$w_P(T) := \prod_{(u,v)\in T} P(u,v),$$

where (u, v) runs over *directed* edges in *T* that goes towards the root. See fig. 1 for an example.

Figure 1: $w_P(T) = P(v, u)P(x, u)P(y, z)P(z, x)$. All arcs are oriented toward root.

Let

$$\Sigma_v := \sum_{T \in \mathcal{A}_v} w_P(T) \text{ and } \Sigma^{(1)} := \sum_{v \in \mathcal{V}} \Sigma_v.$$

In section 2, we shall prove

Theorem 1 (Markov chain tree theorem). Let $\pi \in \mathbb{R}^{\mathcal{V}}$ with $\pi(v) := \sum_{v} \sum_{v}^{(1)}$. Then π is the unique stationary distribution of X.

We can generalize the weight function to a spanning forest of \mathcal{V} . Let (T_1, T_2, \ldots, T_r) be a spanning forest of \mathcal{V} with r rooted trees. Define

$$w_p(T_1, T_2, \ldots, T_r) := \prod_{i=1}^r w_p(T_i).$$

Analogously, write

$$\Sigma^{(r)} := \sum_{(T_1,\ldots,T_r)} w_p(T_1,T_2,\ldots,T_r),$$

where the sum is over all spanning forests consists of r rooted trees. In section 3, we shall prove that

Theorem 2. Let κ be the Kemeny's constant of irreducible Markov chain X. Then

$$\kappa = 1 + \frac{\Sigma^{(2)}}{\Sigma^{(1)}}.$$

2 Lifting the Markov chain to the spanning tree space

We shall present a natural way to 'lift' X to a Markov chains with state space \mathcal{A} , denoted by \hat{X} . Then we can prove theorem 1 by looking into the properties of \hat{X} . We first introduce projection of a Markov chain.

Projection of a Markov Chain. Let $X := (X_t)_{t \in \mathbb{N}}$ be a Markov Chain with state space X and transition matrix Q. Suppose that $f : X \to \mathcal{Y}$ is a surjective map such that for all $y \in \mathcal{Y}$,

$$f(x_1) = f(x_2)$$
 implies $\sum_{x \in f^{-1}(y)} Q(x_1, x) = \sum_{x \in f^{-1}(y)} Q(x_2, x).$ (1)

Define a matrix $Q' \in \mathbb{R}^{\mathcal{Y} \times \mathcal{Y}}$ by

$$Q'(y_1, y_2) := \sum_{x_2 \in f^{-1}(y_2)} Q(x_1, x_2),$$
(2)

where x_1 is any preimage of y_1 , i.e., $x_1 \in f^{-1}(y_1)$. Note that Q' is well-defined given that eq. (1) is satisfied. Let $Y_t := f(X_t)$. It is easy to check that $Y := (Y_t)_{t \in \mathbb{N}}$ is a Markov Chain with state space \mathcal{Y} and transition matrix Q'. We say Y is a *projection* of X.

Intuitively, we expect that some properties of the original chain *X* can also be 'projected' to the projection chain *Y*. Indeed, stationary distribution is such an example:

Proposition 3. Let Y be a projection of X. If $\pi \in \mathbb{R}^X$ is a stationary distribution for X, then

$$\mu(y) \coloneqq \sum_{x \in f^{-1}(y)} \pi(x)$$

is a stationary distribution for Y.

Now we 'lift' X to a Markov Chain \hat{X} with state space \mathcal{A} and transition matrix \hat{P} , where \hat{P} is defined as follows. Let $v \in V, T \in \mathcal{A}$, say, $T \in \mathcal{A}_u$. We obtain a new tree T', rooted at v, by adding the edge (u, v) to T and deleting the only out edge of v in T(see fig. 2). Then one simply set $\hat{P}(T, T') := P(u, v)$. If $T'' \in \mathcal{A}$ cannot be obtain from T in this way, set $\hat{P}(T, T'') = 0$.

Consider the mapping root : $\mathcal{A} \to \mathcal{V}$ that maps T to its root, that is, root(T) := v for every $T \in \mathcal{A}_v$. We claim that X is a projection of \hat{X} , and

Figure 2: Transition of \hat{X} with $\hat{P}(T, T') := P(u, v)$.

the projection mapping is root. Indeed, since the transition of \hat{X} depends only on $root(X_t)$, it is easy to verify eq. (1) and eq. (2) holds.

Now we turn to the proof of theorem 1.

Proof of theorem 1. \hat{X} is also irreducible for we assume that X is irreducible. For $T \in \mathcal{A}$, let $\pi(T) := w_P(T)/\Sigma^{(1)}$. We claim that

Proposition 4. π is the unique stationary distribution for \hat{X} .

Proof. For any $T \in \mathcal{A}$, say $T \in \mathcal{A}_u$, we are to verify

$$\sum_{S\in\mathcal{A}} w_P(S)\hat{P}(S,T) = w_P(T).$$

Let v_1, v_2, \ldots, v_ℓ be the neighbors of u in T. For $i \in [\ell]$, Define

 $V_i := \{v \in \mathcal{V} : \text{there exists a path from } v \text{ to } v_i\}.$

Note that if $\hat{P}(S,T) > 0$ and $S \neq T$, we have $S \in \mathcal{A}_{v_i}$ for some $i \in [\ell]$. Hence,

$$\sum_{S \in \mathcal{A}} w_P(S) \hat{P}(S,T) = w(T) \hat{P}(T,T) + \sum_{i=1}^{\ell} \sum_{S \in \mathcal{A}_{v_i}} w(S) \hat{P}(S,T)$$
(3)

For $S \in \mathcal{A}_{v_i}$, let $S = T - (v_i, u) + (u, x)$, where $x \in V_i$ is the predecessor of u in S, i.e., $(u, x) \in S$ (see fig. 3). Clearly, $w(S)\hat{P}(S,T) = w(S)P(v_i, u) = w(T)P(u, x)$ and $\hat{P}(T,T) = P(u, u)$. We point out that $S \mapsto x$ is a one-to-one correspondence. Therefore, together with eq. (3), we get

Figure 3: Tree *S* plus (v_i, u) equals tree *T* plus (u, x).

$$\sum_{S \in \mathcal{A}} w_P(S) \hat{P}(S,T) = w(T) P(u,u) + \sum_{i=1}^{\ell} \sum_{x \in V_i} w(T) P(u,x)$$
$$= w(T) \left[P(u,u) + \sum_{x \in \mathcal{V} \setminus \{u\}} P(u,x) \right] = w(T),$$

which is exactly what we set out to prove.

We are happy to see that theorem 1 simply follows from proposition 4 and proposition 3. $\hfill \Box$

3 Kemeny's constant and counting spanning forests

As usual, we study an irreducible Markov Chain with state space X and stationary distribution π . For $x \in X$, let τ_x be the *hitting time* of x.

3.1 Random walk with random Target

We are now interested in the quantity (for $a \in X$):

$$\kappa(a) \coloneqq \mathbf{E}_a \left[\tau_\pi \right] \coloneqq \sum_{b \in \mathcal{X}} \mathbf{E}_a \left[\tau_b \right] \cdot \pi(b).$$

This quantity is the expected time of hitting a random target with distribution π .

Lemma 5 (Random Target Lemma). *The quantity* $\kappa(a)$ *does not depend on* $a \in X$. *Proof.* It suffices to show that κ is harmonic. Note that

$$(P\kappa)(a) = \mathbf{E}_a\left[\kappa(X_1)\right] = \sum_{x \in \mathcal{X}} \kappa(x) P(a, x) = \sum_{x \in \mathcal{X}} \sum_{b \in \mathcal{X}} \pi(b) \mathbf{E}_x\left[\tau_b\right] P(a, x).$$
(4)

If $b \neq a$,

$$\sum_{x \in \mathcal{X}} \mathbf{E}_x \left[\tau_b \right] P(a, x) = \mathbf{E}_a \left[\tau_b \right] - 1;$$

if b = a,

$$\sum_{x \in \mathcal{X}} \mathbf{E}_x \left[\tau_b \right] P(a, x) = \mathbf{E}_a \left[\tau_a^+ \right] - 1 = \frac{1}{\pi(a)} - 1$$

Hence, we rearrange eq. (4) as

$$(P\kappa)(a) = \sum_{b \in \mathcal{X}} \pi(b) \left[\sum_{x \in \mathcal{X}} \mathbf{E}_x [\tau_b] P(a, x) \right]$$

=
$$\sum_{b \in \mathcal{X} \setminus \{a\}} \pi(b) (\mathbf{E}_a [\tau_b] - 1) + \pi(a) (\frac{1}{\pi(a)} - 1)$$

=
$$\sum_{b \in \mathcal{X}} \pi(b) (\mathbf{E}_a [\tau_b] - 1) + 1$$
 (since $\mathbf{E}_a [\tau_a] = 0$)
= $\kappa(a)$.

This finishes the proof.

According to the lemma above, the starting measure is of no significance for the quantity $\kappa(\cdot)$. Hence, we can define the *target time* of an irreducible chain by $\kappa := \kappa(a)$, where $a \in X$ is arbitrary. Or equivalently,

$$\kappa \coloneqq \mathbf{E}_{\pi} [\tau_{\pi}] \coloneqq \sum_{a,b \in \mathcal{X}} \mathbf{E}_a [\tau_b] \pi(a) \pi(b).$$

Intuitively, κ is the expected time of going to a random target from a random starting location. Thus, we deem that κ measure the connectivity of the network to some degree. κ is also known as **Kemeny's constant**.

3.2 Relating Kemeny's constant and spanning forests

For simplicity, write $m(u, v) := \mathbf{E}_u [\tau_v]$ for every $(u, v) \in \mathcal{V} \times \mathcal{V}$. For $T \in \mathcal{A}_v$, let last(T, u) be the last vertex before v in the path from u to v in T, as is shown in fig. 4.

Figure 4: Definition of last(T, u).

In order to prove theorem 2, we draw on the following theorem without presenting a proof.

Theorem 6 (Markov chain tree formula for mean hitting times [1]). Let *P* be a transition matrix for an irreducible chain. For each $u \neq v$,

$$m(u,v)=\frac{\Sigma_{uv}}{\Sigma_v},$$

where

$$\Sigma_{uv} := \sum_{T \in \mathcal{A}_v} \frac{w_P(T)}{P(\texttt{last}(T, u), v)}$$

Now we are ready to prove theorem 2.

Proof of theorem 2. By omitting the arc (last(T, u), v) in T, we get a spanning forrest (T_1, T_2) from T, where T_1 is the subtree with root last(T, u), $T_2 = T \setminus T_1$. The map $T \mapsto (T_1, T_2)$ is a bijection from \mathcal{A}_v to the spanning forests

$$\mathcal{F}_{uv} := \{ (T_1, T_2) : u \in T_1 \text{ and } root(T_2) = v \}.$$

Note that $w_p(T)/P(last(T, u), v) = w_P(T_1, T_2)$, and thus

$$\Sigma_{uv} = \sum_{(T_1, T_2) \in \mathcal{F}_{uv}} w_P(T_1, T_2).$$

Observe that for fixed u, { $\mathcal{F}_{uv} : v \in X \setminus \{u\}$ } form a partition of all 2-component spanning forests. Hence,

$$\Sigma^{(2)} = \sum_{v \in \mathcal{X} \setminus \{u\}} \Sigma_{uv}.$$
 (5)

Since $m(u, u) = \frac{1}{\pi(u)}$, by theorem 6 we have

$$\kappa = 1 + \sum_{v \in \mathcal{X} \setminus \{u\}} \pi(b)m(u,v) = 1 + \sum_{v \in \mathcal{X} \setminus \{u\}} \pi(v)\frac{\Sigma_{uv}}{\Sigma_v}.$$
(6)

According to theorem 1, $\pi(v) = \Sigma_v / \Sigma^{(1)}$. Plugging this into eq. (6) yields

$$\kappa = 1 + \sum_{v \in \mathcal{X} \setminus \{u\}} \frac{\Sigma_{uv}}{\Sigma^{(1)}} = 1 + \frac{\Sigma^{(2)}}{\Sigma^{(1)}},$$

where the last step follows from eq. (5).

 Jim Pitman and Wenpin Tang. Tree formulas, mean first passage times and kemenys constant of a markov chain. *Bernoulli*, 24(3):19421972, Aug 2018. 1, 7