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In this note, I shall present two results that reveals the connection between
(irreducible) Markov chains and counting spanning trees/forests. One is
a classical result, known as Markov Chain Tree Theorem(theorem 1), the
other(theorem 2) is taken from [1], which shows Kemeny’s constant can
be expressed by the number of spanning forests. Spanning trees/forests
are mainly combinatorial objects, while Markov chains are usually inves-
tigated in the context of probability theory, and thus such connections are
often insightful and interesting.

Acknowledgement I would like to warmly thank Prof. Wu for his intriguing
lecture on Graph and Networks during 2020 Fall. This note is also an extension
of topics discussed during the lecture .

1 Introduction

Let X be a irreducible Markov chain with finite state space V and transition
matrix P. Let A, be the set of rooted spanning rooted trees on V with rootv € V.
Write A := U, Ay, ie., A is the set of all rooted spanning trees on V.

A relevant material:
http://math.sjtu.edu.cn/faculty/ykwu/data/TeachingMaterial/MCT.pdf


http://math.sjtu.edu.cn/faculty/ykwu/data/TeachingMaterial/MCT.pdf

We associate to each tree T € A a weight via
wp(T) = | | P(wo),
(u,0)€T

where (u,v) runs over directed edges in T that goes towards the root. See fig. 1
for an example.

T €A,

Figure 1: wp(T) = P(v,u)P(x,u)P(y, z2)P(z, x). All arcs are oriented toward root.

Let
Yo = Z wp(T) and > .= Z Yo

TeA, veV
In section 2, we shall prove

Theorem 1 (Markov chain tree theorem). Let 7 € RV with (v) := 3,/ Then
7 is the unique stationary distribution of X.

We can generalize the weight function to a spanning forest of V. Let (T3, T, . . ., Ty)
be a spanning forest of V with r rooted trees. Define

.
wy(Ty, Ty, ..., Ty) 1= ]_[ wy(T}).
i=1

Analogously, write
5 = Z wo(Ty, Ty ..., T)),

where the sum is over all spanning forests consists of r rooted trees. In section 3,
we shall prove that

Theorem 2. Let k be the Kemeny’s constant of irreducible Markov chain X. Then
3(2)

K:1+W.



2 Lifting the Markov chain to the spanning tree space

We shall present a natural way to ‘lift’ X to a Markov chains with state space A,
denoted by X. Then we can prove theorem 1 by looking into the properties of X.
We first introduce projection of a Markov chain.

Projection of a Markov Chain. Let X := (X;);en be a Markov Chain with state
space X and transition matrix Q. Suppose that f : X — Y is a surjective map
such that forally € Y,

fGa) = f(xo) implies D" Q(xpx) = > Qlxax). (1)
xef~1(y) xef~(y)

Define a matrix Q' € RY*Y by

Qyny) = Y, Qxx), (2)

x2€fH(y2)

where x; is any preimage of y;, i.e., x; € f~!(y;). Note that Q’ is well-defined
given that eq. (1) is satisfied. Let Y; := f(X}). It is easy to check that Y := (¥});en
is a Markov Chain with state space Y and transition matrix Q’. We say Y is a
projection of X.

Intuitively, we expect that some properties of the original chain X can also
be ‘projected’ to the projection chain Y. Indeed, stationary distribution is such
an example:

Proposition 3. Let Y be a projection of X. If 1 € R is a stationary distribution
for X, then

is a stationary distribution forY.

Now we ‘lift’ X to a Markov Chain X with state space A and transition matrix
P, where P is defined as follows. Letv € V, T € 4, say, T € A,. We obtain a new
tree T’, rooted at v, by adding the edge (u,v) to T and deleting the only out edge
of v in T(see fig. 2). Then one simply set P(T,T’) := P(u,0). If T” € A cannot be
obtain from T in this way, set P (T, T”) = 0.

Consider the mapping root : A — <V that maps T to its root, that is,
root(T) := o for every T € A,. We claim that X is a projection of X, and
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Figure 2: Transition of X with P(T, T’) := P(u,v).

the projection mapping is root. Indeed, since the transition of X depends only
on root(X;), it is easy to verify eq. (1) and eq. (2) holds.
Now we turn to the proof of theorem 1.

Proof of theorem 1. X is also irreducible for we assume that X is irreducible. For
T € A, let 7(T) := wp(T) /. We claim that

Proposition 4. 7 is the unique stationary distribution for X.

Proof. Forany T € A, say T € A,, we are to verify

Z wp(S)P(S, T) = wp(T).

SeA

Let v1, 0y, . ..,0, be the neighbors of u in T. For i € [£], Define
Vi .= {v € V : there exists a path from v to v;}.
Note that if P(S,T) > 0 and S # T, we have S € Ay, for some i € [¢]. Hence,
¢
2, we(OPS.T) =wDPT.T) + 3 ) wSE(S.T) 3
SeA i=1 SeA,,

For S € A,, let S = T — (v;,u) + (u, x), where x € V; is the predecessor of u in
S,ie., (u,x) € S (see fig. 3). Clearly, w(S)P(S, T) = w(S)P(v;, u) = w(T)P(u, x)
and P(T, T) = P(u, u). We point out that S — x is a one-to-one correspondence.
Therefore, together with eq. (3), we get



Figure 3: Tree S plus (v;, u) equals tree T plus (u, x).

4
Z wp(S)P(S, T) = w(T)P(w, u) + Z Z w(T)P(u, x)

SeA i=1 xeV;
= w(T) |P(u,u) + Z P(u,x)| = w(T),
x€V\{u}
which is exactly what we set out to prove. O

We are happy to see that theorem 1 simply follows from proposition 4 and
proposition 3. o

3 Kemeny’s constant and counting spanning forests

As usual, we study an irreducible Markov Chain with state space X and station-
ary distribution 7. For x € X, let 7, be the hitting time of x.

3.1 Random walk with random Target

We are now interested in the quantity (for a € X):

k(@) = Eq 2] = ) Bq[1] - 7(D).

beX
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This quantity is the expected time of hitting a random target with distribution
TT.

Lemma 5 (Random Target Lemma). The quantity k(a) does not depend on a € X.

Proof. 1t suffices to show that k is harmonic. Note that

(P)(a) = Bg [(X1)] = ) k(x)P(a,x) = > > w(b)Ex [m] P(ax). (4)

xeX x€X beX
Ifb #a,
D Ex[n] P(a,x) = Eo[nm] - 1;
xeX
if b = aq, |
);\,Ex [7p] P(a,x) = E, [Ta] -1= (@) - 1.
Hence, we rearrange eq. (4) as
(Pi)(a) = Y 7(b) | D Bx [1] Pla, x)}
beX xeX
= 3% A0 Ealn] = 1)+ (@) (= 1)
beX\{a}
= Z 7(b)(Eg [1] — 1) + 1 (since E, [7,] = 0)
beX
=x(a).
This finishes the proof. O

According to the lemma above, the starting measure is of no significance for
the quantity x(-). Hence, we can define the target time of an irreducible chain by
k := k(a), where a € X is arbitrary. Or equivalently,

< :=E;[x] = ) Ealnl n(@)n(b).

abeX

Intuitively, k is the expected time of going to a random target from a random
starting location. Thus, we deem that ¥ measure the connectivity of the network
to some degree. k is also known as Kemeny’s constant.



3.2 Relating Kemeny’s constant and spanning forests

For simplicity, write m(u,v) := E, [7,] for every (u,v) € VX V.ForT € A,, let
Last(T, u) be the last vertex before v in the path from u to v in T, as is shown in

o
o
‘o @& O

Iast(T, u)
®

T € A,

Figure 4: Definition of last(T, u).

In order to prove theorem 2, we draw on the following theorem without pre-
senting a proof.

Theorem 6 (Markov chain tree formula for mean hitting times [1]). Let P be a
transition matrix for an irreducible chain. For each u # v,

_ u
m(u,v) = 5
where T)
wp
D = .
Z P(last(T,u),v)

TeA,

Now we are ready to prove theorem 2.

Proof of theorem 2. By omitting the arc (last(T,u),v) in T, we get a spanning
forrest (T;, T,) from T, where T; is the subtree with root last(T,u), T, = T \ Tj.
The map T +— (T3, T3) is a bijection from A, to the spanning forests

ﬁu = {(TI,TZ) ued and rOOt(TZ) = U}-

Note that w,(T)/P(last(T,u),v) = wp(Ti, T3), and thus

DS Z WP(TI: TZ)'

(TlaTZ)eﬂv

7



Observe that for fixed u, {¥Fy, : v € X \ {u}} form a partition of all 2-component

spanning forests. Hence,

> = Z o

veX\{u}

1

) by theorem 6 we have

Since m(u,u) =

k=1+ Z m(bym(u,v) =1+ Z JT(U)ZZM.

0eX\{u} veX\{u} ?

According to theorem 1, 7(v) = %,/3(). Plugging this into eq. (6) yields

) »(2)
=1+ ), =15
veX\{u}Z 2

where the last step follows from eq. (5).
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