
Some Complexity Measures for Boolean
Functions

Xinyu Mao
Shanghai Jiao Tong University

January 7, 2021

A Boolean function 𝑓 : {0, 1}𝑛 → {0, 1} is a function that takes an input of 𝑛
bits, and outputs a single bit. For input 𝑥 ∈ {0, 1}𝑛 , we use 𝑥𝑖 ot denote its 𝑖th bit.
We use |𝑥 | to denote the Hamming distance of 𝑥 , i.e, number of ones in 𝑥 . Here
are some examples:

• zero𝑛 (𝑥) = 0 for all 𝑥 ∈ {0, 1}𝑛;

• or𝑛 (𝑥) = 1 iff |𝑥 | ≥ 1;

• maj𝑛 (𝑥) = 1 iff |𝑥 | ≥ 𝑛/2.

At first glance, one might say: “The function or𝑛 is more complicated than
zero𝑛 .” However, what does ‘more complicated’ mean here? In other words, how
to measure the complexity of Boolean functions? Also, inspired by the study of
Turing machines, we may ask: can we use a more concise computational model
whenwe focus only on Boolean functions? Perhaps the simplest one is the model
of decision trees, which is investigated in section section 1.

Moreover, we shall discuss several complexity measures for Boolean func-
tions, including sensitivity, block sensitivity, and the degree of a representing
polynomial. These measures have close connection to the desition tree complex-
ity, thus providing various techniques for studying the latter; these are elaborated
in section 2 and section 3.

This essay serves as an assignment for CS087-1. I learned a lot from [4] and
Chapter 12 of [2] in the midst of writing.

1

Acknowledegement I would like to warmly thank Jiapeng Zhang, who is now
an assistant professor at USC, for his enlightening lecture about Boolean func-
tions on Oct.26, 2020. The lecture also inspires this essay’s topic selection.

1 Decision tree complexity
Let 𝑓 : {0, 1}𝑛 → {0, 1} be a Boolean function. If we can access one bit (not
necessarily in order) of the input 𝑥 at a time, the following question is natural:
in order to compute 𝑓 , how many bits we need to examine?

We may describe a deterministic algorithm for 𝑓 as a tree.

Decition tree. A decision tree for 𝑓 is a binary tree such that

1. each internal node is labeled with some 𝑖 ∈ [𝑛];

2. each leaf is labeled with an output value 0 or 1;

3. for 𝜎 ∈ {0, 1}, exactly one of the two outgoing edge of an node is labeled
with 𝜎 .

The computation on 𝑥 starts at the root and proceeds as follows: at each node,
say the label is 𝑖 , 𝑥𝑖 is examined. The computation continues by moving to the
node reached by the edge with label 𝑥𝑖 from the current node. If a leaf is reached,
the output value at the leaf is 𝑓 (𝑥). See fig. 1 for an example.

Figure 1: A decision tree that computes maj3.

Let T𝑓 be the set of decision trees that computes 𝑓 . The height of a decision
tree 𝑇 ∈ T𝑓 , denoted by ℎ(𝑇), is the depth of the deepest node. For instance, the

2

height of the tree in fig. 1 is 3. That is, ℎ(𝑇) is the number of bits examined by𝑇
on the worst input. Then the following definition is quite straightforward.

Definition 1. The decision tree complexity of 𝑓 is defined as

𝐷 (𝑓) := min
𝑇∈T𝑓

ℎ(𝑇).

Intuitively, 𝐷 (𝑓) is the number of bits we need to examine using the opti-
mal algorithm to compute 𝑓 . Clearly, 𝐷 (𝑓) ≤ 𝑛. It is interesting that for some
function, this trivial bound is tight, i.e., 𝐷 (𝑓) = 𝑛. If 𝐷 (𝑓) = 𝑛, we say 𝑓 is
evasive.

Proposition 2. or𝑛 is evasive.

Proof. To do this, we use an adversary argument. Let 𝑇 ∈ Tor𝑛 . We think of
an execution of 𝑇 , where each query on input is answered by some adversary
A. A always answered 0 for the first 𝑛 − 1 queries so that 𝑇 has to continue
its computation until the last bit is revealed. Hence, there exists an input 𝑥 that
consists of the answers made by A, such that 𝑥 has depth 𝑛 in 𝑇 . Since 𝑇 is
arbitrary, we conclude that 𝐷 (or𝑛) = 𝑛. □

A graph property is a Boolean function 𝑃 : {0, 1}(𝑚2) → {0, 1}, where𝑚 := |𝑉 |
is the number of vertices. It is easy to see that an input 𝑥 ∈ {0, 1}(𝑚2) can be
interpreted as a undirected graph: for each 𝑒 ∈

(𝑉
2
)
, 𝑒 is in𝐺 iff 𝑥𝑒 = 1, assuming

that the bits in 𝑥 is indexed by
(𝑉
2
)
.

Intuitively, a graph property does not depend on the indices of vertices. For
example, conditions such as connectivity, being bipartite are graph properties,
while things like ’vertex 1 and vertex 2’ are connected’ are not.

Proposition 3. Graph connectivity is evasive.

Proof Sketch. Let 𝑃 := ‘𝐺 is connected’. We again draw on adversary argument.
Suppose that decision tree 𝑇 computes 𝑃 . The adversary A answers 0 unless
answering 0would imply that the graph was disconnected. This way, the known
existing edges form a spanning forest, and the forest does not turn into a span-
ning tree until the last edge is revealed. □

3

Aanderaa-Karp-Rosenberg Conjecture Not all graph properties are evasive
[3]. A graph property is monotone if adding edges to the graph preserves the
property, e.g., connectivity. Stål Aanderaa, RichardM. Karp, andArnold L. Rosen-
berg made the following conjecture:

Conjecture 4. Every non-constant monotone graph property is evasive.

This conjecture is still open so far. Rivest and Vuillemin proved that if𝑚 is a
prime power, conjecture 4 is true [7].

2 Sensitivity
In this section, we introduce sensitivity of a function 𝑓 : {0, 1}𝑛 → {0, 1}, which
leads to lower bounds on decision tree complexity.

For 𝑆 ⊆ [𝑛], let 𝑥𝑆 be the input obtained from 𝑥 by flipping each 𝑥𝑖 for 𝑖 ∈ [𝑆].
Write 𝑥𝑖 := 𝑥 {𝑖}(flipping the 𝑖th bit of 𝑥) for simplicity.

Define the sensitivity of 𝑓 at 𝑥 as

𝑠𝑥 (𝑓) := #{𝑖 ∈ [𝑛] : 𝑓 (𝑥) ≠ 𝑓 (𝑥𝑖)}.

Let𝑄𝑛 = (𝑉 , 𝐸) be the n-dimensional hypercube, where𝑉 = {0, 1}𝑛, 𝐸 := {{𝑥,𝑦} :
𝑦 = 𝑥𝑖 for some 𝑖}. View 𝑓 as a 2-coloring on 𝑄𝑛 , then 𝑠𝑥 (𝑓) is the number of
adjacent vertices whose color is different with 𝑥 .

Definition 5. The quantity 𝑠 (𝑓) := max𝑥∈{0,1}𝑛 𝑠𝑥 (𝑓) is called the sensitivity of 𝑓 .

An extension of sensitivity is block sensitivity. The block sensitivity of 𝑓 at
𝑥 is the maximum number of 𝑘 , such that there exists a partition of [𝑛], say
𝐵1, 𝐵2, · · · , 𝐵𝑘 , satisfying 𝑓 (𝑥) ≠ 𝑓 (𝑥𝐵𝑖),∀𝑖 ∈ [𝑘].

Definition 6. The block sensitivity of 𝑓 is defined via 𝑏𝑠 (𝑓) := max𝑥∈{0,1}𝑛 𝑏𝑠𝑥 (𝑓).

Clearly, 𝑠 (𝑓) ≤ 𝑏𝑠 (𝑓). It is conjectured that 𝑏𝑠 (𝑓) = 𝑂 (𝑠 (𝑓)𝑐) for some
constant 𝑐 . This is known as sensitivity conjecture, and is proven to be true by
Hao Huang in recent years:

Theorem 7 (Hao Huang, [5]). 𝑏𝑠 (𝑓) ≤ 𝑠 (𝑓)4.

Proposition 8. 𝑠 (𝑓) ≤ 𝑏𝑠 (𝑓) ≤ 𝐷 (𝑓).

4

Proof. Let 𝑥 be such that 𝑏𝑠 (𝑓) = 𝑏𝑠𝑥 (𝑓) = 𝑠 with 𝐵1, 𝐵2, . . . , 𝐵𝑠 be the corre-
sponding partition of [𝑛]. Let 𝑇 ∈ T𝑓 . When given 𝑥 as input, 𝑇 has to query
at least one bit in each block 𝐵𝑖 for every 𝑖 ∈ [𝑠] in order to distinguish 𝑥 from
𝑥𝐵𝑖 . □

Also, sensitivity can also give an upper bound on 𝐷 (𝑓):
Theorem 9 ([1]). 𝐷 (𝑓) ≤ 𝑏𝑠 (𝑓)3.

Together with theorem 7, we have 𝑠 (𝑓) ≤ 𝐷 (𝑓) ≤ 𝑠 (𝑓)12.

3 Polynomial representation of Boolean functions
Another way to give lower bounds on 𝐷 (𝑓) involves polynomial representation
of 𝑓 .

A polynomial 𝑝 ∈ ℂ[𝑥1, 𝑥2, . . . , 𝑥𝑛] ismultilinear if for all 𝑖 ∈ [𝑛] and𝛼, 𝛽 ∈ ℂ,

𝑝 (𝑥1, . . . , 𝑥𝑖−1, 𝛼𝑥𝑖 + 𝛽𝑥′𝑖 , . . . , 𝑥𝑛) = 𝛼𝑝 (𝑥1, . . . , 𝑥𝑛) + 𝛽𝑝 (𝑥1, . . . , 𝑥𝑖−1, 𝑥′𝑖 , . . . , 𝑥𝑛).
That is, the degree of each variable in 𝑝 is 1. Or equivalently, 𝑝 must be of the
form 𝑝 (𝑥) = ∑

𝑆⊆[𝑛] (𝑐𝑆
∏

𝑖∈𝑆 𝑥𝑖) for some complex numbers 𝑐𝑆 .
We say a polynomial 𝑝 ∈ ℂ[𝑥1, 𝑥2, . . . , 𝑥𝑛] represents Boolean function 𝑓 :

{0, 1}𝑛 → {0, 1} if 𝑝 (𝑥) = 𝑓 (𝑥) for all 𝑥 ∈ {0, 1}𝑛 . In fact, we have

Proposition 10. Each Boolean function 𝑓 : {0, 1}𝑛 → {0, 1} has a unique multi-
linear polynomial 𝑝 that represents 𝑓 .

Proof. It is easy to construct a such a polynomial from 𝑓 . For each 𝑎 ∈ {0, 1}𝑛 ,
define a polynomial

𝜒𝑎 (𝑥1, . . . , 𝑥𝑛) =
∏
𝑖:𝑎𝑖=1

𝑥𝑖
∏
𝑖:𝑎𝑖=0

(1 − 𝑥𝑖).

Clearly, 𝜒𝑎 is multilinear. Now we set

𝑝 𝑓 :=
∑

𝑎∈{0,1}𝑛
𝑓 (𝑎)𝜒𝑎 .

One can easily check that 𝑝 𝑓 represents f (and it is of course multilinear).
Assume that a multilinear polynomial 𝑝′ also represents 𝑓 , we shall prove

that 𝑝′ = 𝑝 𝑓 . Note that the polynomial 𝑝 := 𝑝′ − 𝑝 𝑓 is multilinear and 𝑝 (𝑥) = 0
for all 𝑥 ∈ {0, 1}𝑛 . Write 𝑝 (𝑥) =

∑
𝑆⊆[𝑛] (𝑐𝑆

∏
𝑖∈𝑆 𝑥𝑖). An induction on |𝑆 | show

that 𝑐𝑆 = 0 for all 𝑆 ⊆ [𝑛], which means 𝑝 ≡ 0. Hence, 𝑝′ = 𝑝 𝑓 , that is, 𝑝 𝑓 is the
unique multilinear polynomial that represents 𝑓 . □

5

The degree of 𝑓 , denoted by deg(𝑓), is the degree of the multilinear polyno-
mial that represents 𝑓 . According to proposition 10, deg(𝑓) is well-defined.

For example, or𝑛 is represented by

𝑝 (𝑥) := 1 −
𝑛∏
𝑖=1

(1 − 𝑥𝑖),

and hence deg(or𝑛) = 𝑛. In fact, we have

Theorem 11. deg(𝑓) ≤ 𝐷 (𝑓).

Proof. Let 𝑇 ∈ T𝑓 such that ℎ(𝑇) = 𝐷 (𝑓). It suffices to construct a multilinear
polynomial 𝑝 that represents 𝑓 with deg(𝑝) ≤ ℎ(𝑇).

For each leaf 𝐿, let (𝑏1, 𝑒1), (𝑏2, 𝑒2), . . . , (𝑏ℓ , 𝑒ℓ) ∈ [𝑛] × {0, 1} be the path from
root to 𝐿 in 𝑇 . where 𝑏𝑖 is the label on the node, 𝑒𝑖 is the label on the edge that
starts from 𝑏𝑖 . We study the polynomial

𝜒𝐿 (𝑥) :=
∏
𝑖:𝑒𝑖=1

𝑥𝑏𝑖

∏
𝑖:𝑒𝑖=0

(1 − 𝑥𝑏𝑖).

Note that for 𝑥 ∈ {0, 1}𝑛 , if leaf 𝐿 is reached on input 𝑥 , 𝜒𝐿 (𝑥) = 1; otherwise,
𝜒𝐿 (𝑥) = 0. Set 𝑝 (𝑥) :=

∑
𝐿 𝜒𝐿 , where the sum runs over all leaf 𝐿 with output

value 1. One can see that 𝑝 has the properties we want. □

A rough upper bound of𝐷 (𝑓) is also known (proved by Nisan and Smolensky
[6]):

Theorem 12. For every Boolean function 𝑓 ,

1. 𝑏𝑓 (𝑓) ≤ 2 deg(𝑓)2;

2. 𝐷 (𝑓) ≤ deg(𝑓)2𝑏𝑠 (𝑓).

Therefore, deg(𝑓) ≤ 𝐷 (𝑓) ≤ 2𝑑𝑒𝑔(𝑓)4.

References
[1] A. Ambainis, Polynomial degree vs. quantum query complexity, Journal of

Computer and System Sciences, 72 (2006), pp. 220 – 238. JCSS FOCS 2003
Special Issue. 5

6

[2] S. Arora and B. Barak, Computational Complexity: A Modern Approach,
Cambridge University Press, 2009. 2

[3] M. Best, P. van Emde Boas, and H. Lenstra, A Sharpened Version of the
Aanderaa-Rosenberg Conjecture, Mathematisch Centrum Amsterdam. Afdel-
ing Zuivere Wiskunde: ZW, Stichting Mathematisch Centrum, 1974. 4

[4] H. Buhrman and R. de Wolf, Complexity measures and decision tree com-
plexity: a survey, Theoretical Computer Science, 288 (2002), pp. 21 – 43. Com-
plexity and Logic. 2

[5] H. Huang, Induced subgraphs of hypercubes and a proof of the sensitivity con-
jecture, 2019. 4

[6] N. Nisan and M. Szegedy, On the degree of boolean functions as real polyno-
mials, Computational complexity, 4 (1994), pp. 301–313. 6

[7] R. L. Rivest and J. Vuillemin, On recognizing graph properties from adja-
cency matrices, Theoretical Computer Science, 3 (1976), pp. 371 – 384. 4

7

	Decision tree complexity
	Sensitivity
	Polynomial representation of Boolean functions

